
CSCE476/876 Spring 2004

Homework 5

Assigned on: Monday, March 7, 2005.

Due: Friday, March 25, 2005.

Programming assignment should be submitted with handin.

1. Data structures in Common Lisp (Total 50 points)

2. Implementing Search in Common Lisp (Total 30 points)

3. Documentation and organization of code. (Total 20 points)
In particular, you must specify your sources and acknowledge any help you may have
received.

Do not hesitate to seek help during recitation and office hours.

1 Data structures in Common Lisp (Total 50 points)

Using defstruct (see LWH, Chapter 13), create data structures in Common Lisp to represent
the map of Romania. Include the information about the distances between two cities linked
by a road as well as the distance from any given city to Bucharest as indicated in Figure 1.

Giurgiu

Urziceni
Hirsova

Eforie

Neamt

Oradea

Zerind

Arad

Timisoara

Lugoj

Mehadia

Dobreta

Craiova

Sibiu Fagaras

Pitesti

Vaslui

Iasi

Rimnicu Vilcea

Bucharest

71

75

118

111

70

75

120

151

140

99

80

97

101

211

138

146 85

90

98

142

92

87

86

Urziceni

Neamt
Oradea

Zerind

Timisoara

Mehadia

Sibiu

Pitesti
Rimnicu Vilcea

Vaslui

Bucharest

Giurgiu
Hirsova

Eforie

Arad

Lugoj

Dobreta
Craiova

Fagaras

Iasi

 0

160

242

161

77

151

366

244

226

176

241

253

329

80

199

380

234

374

100

193

Figure 1: Map of Romania with road distances in kilometers and straight-line distances to

Bucharest.

Indications (follow illustration in Figure 2):

• Create a data structure for a city using defstruct.

• Include an attribute to store the name of the city.

1

((d1) (d2))

Dist2Bucharest

Neighbors

City Name

((d1) (d2))

Dist2Bucharest

Neighbors

City Name

((d1) (d2))

Dist2Bucharest

Neighbors

City Name

((d1) (d2))

Dist2Bucharest

Neighbors

City Name

Figure 2: Data structures.

• Include an attribute to store the neighboring cities.

• Include an attribute that provides the value of the straight-line distance to Bucharest.

• Create a global variable that stores all the cities. Use defvar to declare the global
variables. Implement it this in two different ways: a list *all-cities-list* and a
hash-table *all-cities-htable* 1. Use the name of a city as key and the structure
as value. For sake of clarity, you are not asked to implement a hash-table (which you
probably did in CSCE310) but to use a hash-table in Lisp.

• After creating structures for all the cities, loop through them again in order to include,
in the relevant attribute of a city, a reference its neighboring cities. Store these neigh-
bors as an association list of the structure of a neighbor and the distance between the
two (see LWH, page 31).

Tasks:

1. (10 points) Design, implement and test your map.

2. (5 points) Write a function all-cities-from-list that takes a global variable,
all-cities-list, and returns a list of all names of cities on the map.

3. (5 points) Write a and all-cities-from-htable that takes a global variable,
all-cities-htable and returns a list of all the structures of cities on the map.

1Check documentation on hash-tables in

http://www.cs.cmu.edu/afs/cs.cmu.edu/project/ai-repository/ai/html/cltl/cltl2.html and

http://www.xanalys.com/software tools/reference/HyperSpec/Body/fun make-hash-table.html.

2

4. (5 point) Write two functions get-city-from-list and get-city-from-htable that
take the name of a city as input and return the corresponding structure (by accessing
a global variable, *all-cities-list* and *all-cities-htable*, respectively).

5. (5 points) Write two functions neighbors-using-list and neighbors-using-htable

that take the name of a city as input and return the list of structures of its di-
rect neighbors. neighbors-using-list and neighbors-using-htable should use
get-city-from-list and get-city-from-htable, respectively.

6. (10 points) Using *all-cities-htable*, write a function neighbors-within-d that
takes the name of a city my-city and a number distance, then returns, for all direct
neighbors within distance from my-city (≤), an association list of the structures of
the neighbors of my-city and their distance to my-city.

7. (10 points) Using *all-cities-htable*, write a function neighbors-p that takes the
name of two cities city-1 and city-2, and returns the distance between them if they
are directly connected or nil if they are not.

Note that the global variables should always be passed as arguments to these functions
(becoz it is cleaner).

2 Implementing Search in Common Lisp (Total 30 points)

You are asked to implement:

• Any uninformed search strategy of your choice, 10 points

• A Greedy search strategy, and 10 points

• An A∗ search strategy. 10 points

for the ‘Romanian Holiday’ problem. Needless to say, you should first get Section 1 to work.
Write Search that take as input the name of any city on the map, the name of a search
strategy, and returns:

1. The path to Bucharest,

2. The number of nodes generated/visited by the search process, and

3. The cost of the path found (even when the function g(n) is not used to choose the
node to expand).

Hint: use the Lisp function values. You may choose to write one search function and give
it the strategy as an argument.

3

2.1 Results to report

In addition to your code, report the results of your two functions applied to each city in
Romania as indicated in the following table:

Uninformed search of your choice
City name #nodes visited Path to Bucharest Total cost of path

Arad
Bucharest

...
Vaslui
Zerind

Greedy Search
City name #nodes visited Path to Bucharest Total cost of path

Arad
Bucharest

...
Vaslui
Zerind

A∗ Search
City name #nodes visited Path to Bucharest Total cost of path

Arad
Bucharest

...
Vaslui
Zerind

2.2 Some indications

You may find the following useful:

1. Modify the data structure of a city that you implemented in Homework2 to add one
more field visited, initialized to Nil. Use this attribute for loop control during search:
when a city is visited, set this field to T.

2. Create a new data structure (e.g., defstruct) to represent a node in the search tree.
The structure should have attributes that point to the structures of its parent (when
applicable), its children (list), the city it represents. Other attributes may be necessary,
such as path value at the node.

3. Implement a function expand-node that takes a node in the search tree and generates
its children, which should correspond to cities not yet visited. It needs to generate one
node data-structure per child.

4. Implement a function evaluate-node that takes a node and a search strategy and
returns the value of the node (e.g., g(n), h(n) or f(n)).

4

5. Implement a function that takes a fringe (i.e., a list of nodes to be expanded) and
returns the node to expand. As a refinement, you can provide the name of the search
strategy as an optional second argument (check :key in the list of arguments of a
function).

6. If you separate the implementation search strategy from the evaluation functions clev-
erly enough, you may be to use the same function for all search strategies you imple-
ment.

7. Implement the search strategies either recursively or iteratively, as you prefer.

8. Declare a global variable *nnv* for storing the number of nodes visited . The search
function should set up its value and the function expand-node should increment this
value at every expansion (technically, every instantiation of a search-node structure).

5

