Aienoyd "X'd

-~

Title:  Solving Problems by Searching
AIMA: Chapter 3 (Sections 3.1, 3.2 and 3.3)

Introduction to Artificial Intelligence
CSCE 476-876, Spring 2005
URL: www.cse.unl.edu/ choueiry/S05-476-876

Berthe Y. Choueiry (Shu-we-ri)

5 choueiry@cse.unl.edu, (402)472-5444
g3
5\ /
os]
<
* / \
g
: | Summary
<
Intelligent Agents
e Designing intelligent agents: PAES
e Types of Intelligent Agents
ho 1. Self Reflex
2.7
3.7
4. 7
ug» e Types of environments: observable (fully or partially),
£ é’ deterministic or stochastic, episodic or sequential, static vs.
;E dynamic, discrete vs. continuous, single agent vs. multiagent




-~

Outline

Lienoyd "X'd

e Problem-solving agents

e Formulating problems

— Problem components

“ — Importance of modeling
e Search
— basic elements/components

. — Uninformed search (Sections 3.4-3.6)
é‘r::: — Informed (heuristic) search (Chapter 4)
g3

os]

<

=3

:

Simple reflex agent unable to plan ahead
- actions limited by current percepts

- no knowledge of what actions do

- no knowledge of what they are trying to achieve

~| Problem-solving agent: goal-based agent

Given:
- a problem formulation: a set of states and a set of actions

- a goal to reach/accomplish

= | Find:
: f actions leadi 1
% | - asequence 0 actions leading to goa
g«
w3
3
N @
ot ot




Lionoyd "X'd

[[] Oradea

Arad []

[] Vaslui

ot
Timisoara
Pitesti
[] Hirsova
[] Mehadia Urziceni
= Bucharest
23 Dobreta []
S g .
g a o Eforie
c o0 [] Giurgiu
B2
< w
w3
oz
o ®
S \ /
ot ot
@
(" N
Q
=3
o}
&
Example: Holiday in Romania
On holiday in Romania, currently in Arad, want to go to Bucharest
Formulate goal:
o be in Bucharest
Formulate problem:
states: various cities
actions: (operators, successor function) drive between cities
= | Find solution:
£ sequence of cities, e.g. Arad, Sibiu, Fagaras, Bucharest
3
)
w3
-3
o ®
i Y,
ot ot




Lionoyd "X'd

/Drive to Bucharest... how many roads out of Arad?

L] Vaslui

~ (] Timisoara
Pitesti
L1 Hirsova
[] Mehadia
86
7 Bucharest

_ Dobreta []

=]
o ?: Craiova { Giurgiu Eforie
o 2
5 3
E’ | Use map to consider hypothetical journeys through each road until
w B .
=2 | reaching Bucharest
o @
S \ /
ot ot

@

(" N

Q

=3

o}

&

Arad []
18 L] Vaslui
(] Timisoara
L] Hirsova
o [] Mehadia
75 86
Dobreta []
Craiova ] Giurgiu Eforie
Looking for a sequence of actions — search

_ | Sequence of actions to goal — solution

=]
. | Carrying out actions — execution phase
&8
2 &
£ 0
£ Formulate, search, execute
w2
@o
oz
o @
S \ /
ot ot




Lionoyd "X'd

4 N

Formulate, search, execute

function SIMPLE-PROBLEM-SOLVING-AGENT( p) returnsan action
inputs: p, apercept
static: s, an action sequence, initially empty
state, some description of the current world state
g, agoal, initialy null
problem, a problem formulation

state « UPDATE-STATE(State, p)
if sis empty then
g+ FORMULATE-GOAL(state)
problem « FORMULATE-PROBLEM(State, g)

© S ¢ SEARCH( problem)
action «+— RECOMMENDATION(S, state)
S+ REMAINDER(S, state)
return action
X Update-State X Formulate-goal
5 v/ Formulate-Problem v/ Search
;;TE Recommendation = first, and Remainder = rest
§ g Assumptions for environment: observable, static, discrete, deterministic
Z, 5 sequential, single-agent
éj& \ /
@
: (p N
¢ [ Problem formulation
(=]
Z | A problem is defined by the following items:
1. initial state: In(Arad)
2. successor function S(z) (operators, actions)
Example, S(In(Arad)) = {{Go(Sibiu), In(Sibiu)),
(Go(Timisoara), In(Timisoara)), (Go(Zerind), In(Zerind))}
= 3. goal test, can be explicit, e.g., x = In(Bucharest)
or a property NoDirt(x)
4. step cost: assumed non-negative
5. path cost (additive)
5 e.g., sum of distances, number of operators executed, etc.
£3 | A solution is a sequence of operators leading from the initial state
"
‘;; to a goal state.
8 \Solution quality, optimal solutions. /
Sk




Aienoyd "X'd

4 N

Importance of modeling (for problem formulation)

Real art of problem solving is modeling,
L . state description
deciding what’s in
action description

choosing the right level of abstraction

State abstraction: road maps, weather forecast, traveling
companions, scenery, radio programs, ...
Action abstraction: generate pollution, slowing down/speeding
B up, time duration, turning on the radio, ..
2 &
g % | Combinatorial explosion. Abstraction by removing irrelevant detail
8§ make the task easier to handle
os]
<
* / \
=
State space vs. state set
(FLl =) e | 2 e |52
; g 5 - —
E— —— 3 R 4 038
LCdQ - - g@gk LC@Q ngﬁ d@ak 030 =
{(J= ] =) -
- O 7 =4 s | =
S8
< f
2\ /




Lionoyd "X'd

4 N

Example problems

Toy Problems:
concepts
— intended to illustrate or exercise P
problem-solving methods

\/ can be give concise, exact description

= \/ researchers can compare performance of algorithms
x yield methods that rarely scale-up
x may reflect reality inaccurately (or not at all)
Real-world Problems:
5 — more difficult but whose solutions people actually care about
gg / more credible, useful for practical settings
g 5 x difficult to model, rarely agreed-upon descriptions
AN /
os]
< / \
¢ [ Toy problem: vacuum Single state case
(=]
g o
L 4 4 R
7R | 2R - 2R |o2R
S S
(= : A= (= : 0 =
L3 . L3 L3 . 2R
- s s -
[ S S
N
R
L C ) = Q R
States: L
O
Initial State:
2 | Successor function:
g § Goal test:
i E Path cost:
S With 2 locations: 2.22 states. With n locations: n.2" states /




Lionoyd "X'd

Goy problem: 8-puzzle \

5 4 1 2 3

6 1 8 8 4

7 3 2 7 6 5
Start State Goal State

States:
& | Initial state:
Successor function:
Goal test:
Path cost:
u% — instance of sliding-block puzzles, known to be NP-complete
g é’ — Optimal solution of n-puzzle NP-hard
i; — so far, nothing better than search
gi K—> 8-puzzle, 15-puzzle traditionally used to test search algorithms /
@
<
e N
: Toy problem: n-Queens
W
e
o B Formulation: incremental vs. complete-state
States: Any arrangement of z < 8 queens on board
Initial state:
Successor function: add a queen (alt., move a queen)
E« Goal test: 8 queens not attacking one another
g g
é 5 | Path cost: irrelevant (only final state matters)
< w
w3 . . .
sl — 648 possible states, but 3 other more effective formulations /
S




Lionoyd "X'd

-

Toy problems: requiring search

V 8 puzzles

= V n-queens
vV vacuum
Others: Missionaries & cannibals, farmer’s dilemma, etc.
3
5 &
53
3
w3
@
<
g
¢ | Real-world problems: requiring search
b e Route finding: state = locations, actions = transitions
routing computer networks, travel advisory, etc.
e Touring: start in Bucharest, visit every city at least once
Traveling salesperson problem (TSP) (exactly once, shortest tour)
e VLSI layout: cell layout, channel layout
e minimize area and connection lengths to maximize speed
e Robot navigation (continuous space, 2D, 3D, ldots)
e Assembly by robot-arm
States: robot joint angles, robot and parts coordinates
= Successor function: continuous motions of the robot joins
< 5 goal test: complete assembly
£ ] path cost: time to execute
< w
&’g e + protein design, internet search, etc. (check AIMA)
25\




Lionoyd "X'd

4 N

Problem solving performance

Measures for effectiveness of search:

1. Does it find a solution? complete
2. Is it a good solution? path cost low
3. Search cost? time & space
o
Total cost = Search cost + Path cost
— problem?
h% Example: Arad to Bucharest
g é’ Path cost: total mileage, fuel, tire wear f(route), etc.
;E Search cost: time, computer at hand, etc.
N /
os]
< / \
¢ ( So far
(=]
g e Problem-solving agents
Formulate, Search, Execute
e Formulating problems
— Problem components: States, Initial state, Successor
function, Goal test, Step cost, Path cost
o Solution: sequence of actions from initial state to goal state
— Importance of modeling
Now, search
h‘?”; e Terminology: tree, node, expansion, fringe, leaf, queue, strategy
® 8
2 &
g 5 e Implementation: data structures
LB \o Four evaluation criteria.. 7 /
Sk




Aienoyd "X'd

4 N

Search: generate action sequences

partial solution: sequence yielding a (non goal) intermediate state

generate

= | Search a set of sequences of partial solutions
maintain
Two aspects:
. 1. how to generate sequences
E2 2. which data structures to keep track of them
£ 0
5 f
5\ /
os]
<
* / \
g
: Search generate action sequences
<
Basic idea:
offline, simulated exploration of state space
by generating successors of already-explored states
— expanding states
Start from a state, test if it is a goal state
If it is, we are done
If it is not: expand state
. Apply all operators applicable to current state to
;é’ generate all possible sequences of future states
E: : now we have set of partial solutions
< w
2\ /




Aienoyd "X'd

(a) The initial state >

(b) After expand%

&
(c) After expanding Sibiu
57:;: root: initial state
£3 | Search tree, nodes
<@ leaves: states that can/should not be expanded
L /
os]
<
g
: | Data structure LHW Chapter 13
“ | A node z has a parent, children, depth, path cost g(x)
A{ data structure for a search node
State|z] state in space state
Parent — Node[z] parent node
§ Action|x] operator used to generate node
IS Path — Cost[x] path cost of parent+cost step, path cost g(x)
\ Depth|[x] depth: # nodes from root (path length)
Nodes to be expanded
1 constitute a fringe (frontier)
52
£ 8 managed in a queue,
:;5 order of node expansion determines search strategy




Lionoyd "X'd

/VVarning: \

PARENT-NODE

ACTION = right
DEPTH = 6
PATH-COST = 6

Node

HH

% | Do not confuse: State space and Search (tree) space
[ What is a state?
What is the state space?
Holiday in Romania: What is the size of state space?
3
;;TE What is the size of search tree ?
£ 0
5 | A node has a parent, children, depth, path cost g(z)
:é; Qstate has no parent, children, depth, etc.. /
Sk
@
<
« / \
=3
:
g
Types of Search
Uninformed: use only information available in problem definition
Heuristic: exploits some knowledge of the domain
=3
Uninformed search strategies:
Breadth-first search, Uniform-cost search, Depth-first search,
Depth-limited search, Iterative deepening search, Bidirectional
= | search
52
2 &
£ S
i
w3
N /




Lionoyd "X'd

LT

g00g ‘1€ Lxenuer
Q#£ sPj0U §,1030NIISU]

-~

Search strategies

Criteria for evaluating search:
1. Completeness: does it always find a solution if one exists?
2. Time complexity: number of nodes generated /expanded
3. Space complexity: maximum number of nodes in memory

4. Optimality: does it always find a least-cost solution?

Time/space complexity measured in terms of:
e b: maximum branching factor of the search tree

e d: depth of the least-cost solution

e m: maximum depth of the search space (may be c0)

\_




