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: | Summary
<
Intelligent Agents
e Designing intelligent agents: PAES
e Types of Intelligent Agents
ho 1. Self Reflex
2.7
3.7
4. 7
ug» e Types of environments: observable (fully or partially),
£ é’ deterministic or stochastic, episodic or sequential, static vs.
;E dynamic, discrete vs. continuous, single agent vs. multiagent
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e Problem-solving agents

e Formulating problems

— Problem components

“ — Importance of modeling
e Search
— basic elements/components

. — Uninformed search (Sections 3.4-3.6)
é‘r::: — Informed (heuristic) search (Chapter 4)
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Simple reflex agent unable to plan ahead
- actions limited by current percepts

- no knowledge of what actions do

- no knowledge of what they are trying to achieve

~| Problem-solving agent: goal-based agent

Given:
- a problem formulation: a set of states and a set of actions

- a goal to reach/accomplish

= | Find:
: f actions leadi 1
% | - asequence 0 actions leading to goa
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Example: Holiday in Romania
On holiday in Romania, currently in Arad, want to go to Bucharest
Formulate goal:
o be in Bucharest
Formulate problem:
states: various cities
actions: (operators, successor function) drive between cities
= | Find solution:
£ sequence of cities, e.g. Arad, Sibiu, Fagaras, Bucharest
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/Drive to Bucharest... how many roads out of Arad?

L] Vaslui

~ (] Timisoara
Pitesti
L1 Hirsova
[] Mehadia
86
7 Bucharest

_ Dobreta []

=]
o ?: Craiova { Giurgiu Eforie
o 2
5 3
E’ | Use map to consider hypothetical journeys through each road until
w B .
=2 | reaching Bucharest
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Arad []
18 L] Vaslui
(] Timisoara
L] Hirsova
o [] Mehadia
75 86
Dobreta []
Craiova ] Giurgiu Eforie
Looking for a sequence of actions — search

_ | Sequence of actions to goal — solution

=]
. | Carrying out actions — execution phase
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£ Formulate, search, execute
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Formulate, search, execute

function SIMPLE-PROBLEM-SOLVING-AGENT( p) returnsan action
inputs: p, apercept
static: s, an action sequence, initially empty
state, some description of the current world state
g, agoal, initialy null
problem, a problem formulation

state « UPDATE-STATE(State, p)
if sis empty then
g+ FORMULATE-GOAL(state)
problem « FORMULATE-PROBLEM(State, g)

© S ¢ SEARCH( problem)
action «+— RECOMMENDATION(S, state)
S+ REMAINDER(S, state)
return action
X Update-State X Formulate-goal
5 v/ Formulate-Problem v/ Search
;;TE Recommendation = first, and Remainder = rest
§ g Assumptions for environment: observable, static, discrete, deterministic
Z, 5 sequential, single-agent
éj& \ /
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¢ [ Problem formulation
(=]
Z | A problem is defined by the following items:
1. initial state: In(Arad)
2. successor function S(z) (operators, actions)
Example, S(In(Arad)) = {{Go(Sibiu), In(Sibiu)),
(Go(Timisoara), In(Timisoara)), (Go(Zerind), In(Zerind))}
= 3. goal test, can be explicit, e.g., x = In(Bucharest)
or a property NoDirt(x)
4. step cost: assumed non-negative
5. path cost (additive)
5 e.g., sum of distances, number of operators executed, etc.
£3 | A solution is a sequence of operators leading from the initial state
"
‘;; to a goal state.
8 \Solution quality, optimal solutions. /
Sk
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Importance of modeling (for problem formulation)

Real art of problem solving is modeling,
L . state description
deciding what’s in
action description

choosing the right level of abstraction

State abstraction: road maps, weather forecast, traveling
companions, scenery, radio programs, ...
Action abstraction: generate pollution, slowing down/speeding
B up, time duration, turning on the radio, ..
2 &
g % | Combinatorial explosion. Abstraction by removing irrelevant detail
8§ make the task easier to handle
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State space vs. state set
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Example problems

Toy Problems:
concepts
— intended to illustrate or exercise P
problem-solving methods

\/ can be give concise, exact description

= \/ researchers can compare performance of algorithms
x yield methods that rarely scale-up
x may reflect reality inaccurately (or not at all)
Real-world Problems:
5 — more difficult but whose solutions people actually care about
gg / more credible, useful for practical settings
g 5 x difficult to model, rarely agreed-upon descriptions
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¢ [ Toy problem: vacuum Single state case
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States: L
O
Initial State:
2 | Successor function:
g § Goal test:
i E Path cost:
S With 2 locations: 2.22 states. With n locations: n.2" states /
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Goy problem: 8-puzzle \

5 4 1 2 3

6 1 8 8 4

7 3 2 7 6 5
Start State Goal State

States:
& | Initial state:
Successor function:
Goal test:
Path cost:
u% — instance of sliding-block puzzles, known to be NP-complete
g é’ — Optimal solution of n-puzzle NP-hard
i; — so far, nothing better than search
gi K—> 8-puzzle, 15-puzzle traditionally used to test search algorithms /
@
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: Toy problem: n-Queens
W
e
o B Formulation: incremental vs. complete-state
States: Any arrangement of z < 8 queens on board
Initial state:
Successor function: add a queen (alt., move a queen)
E« Goal test: 8 queens not attacking one another
g g
é 5 | Path cost: irrelevant (only final state matters)
< w
w3 . . .
sl — 648 possible states, but 3 other more effective formulations /
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Toy problems: requiring search

V 8 puzzles

= V n-queens
vV vacuum
Others: Missionaries & cannibals, farmer’s dilemma, etc.
3
5 &
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¢ | Real-world problems: requiring search
b e Route finding: state = locations, actions = transitions
routing computer networks, travel advisory, etc.
e Touring: start in Bucharest, visit every city at least once
Traveling salesperson problem (TSP) (exactly once, shortest tour)
e VLSI layout: cell layout, channel layout
e minimize area and connection lengths to maximize speed
e Robot navigation (continuous space, 2D, 3D, ldots)
e Assembly by robot-arm
States: robot joint angles, robot and parts coordinates
= Successor function: continuous motions of the robot joins
< 5 goal test: complete assembly
£ ] path cost: time to execute
< w
&’g e + protein design, internet search, etc. (check AIMA)
25\
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Problem solving performance

Measures for effectiveness of search:

1. Does it find a solution? complete
2. Is it a good solution? path cost low
3. Search cost? time & space
o
Total cost = Search cost + Path cost
— problem?
h% Example: Arad to Bucharest
g é’ Path cost: total mileage, fuel, tire wear f(route), etc.
;E Search cost: time, computer at hand, etc.
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¢ ( So far
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g e Problem-solving agents
Formulate, Search, Execute
e Formulating problems
— Problem components: States, Initial state, Successor
function, Goal test, Step cost, Path cost
o Solution: sequence of actions from initial state to goal state
— Importance of modeling
Now, search
h‘?”; e Terminology: tree, node, expansion, fringe, leaf, queue, strategy
® 8
2 &
g 5 e Implementation: data structures
LB \o Four evaluation criteria.. 7 /
Sk




Aienoyd "X'd

4 N

Search: generate action sequences

partial solution: sequence yielding a (non goal) intermediate state

generate

= | Search a set of sequences of partial solutions
maintain
Two aspects:
. 1. how to generate sequences
E2 2. which data structures to keep track of them
£ 0
5 f
5\ /
os]
<
* / \
g
: Search generate action sequences
<
Basic idea:
offline, simulated exploration of state space
by generating successors of already-explored states
— expanding states
Start from a state, test if it is a goal state
If it is, we are done
If it is not: expand state
. Apply all operators applicable to current state to
;é’ generate all possible sequences of future states
E: : now we have set of partial solutions
< w
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(a) The initial state >

(b) After expand%

&
(c) After expanding Sibiu
57:;: root: initial state
£3 | Search tree, nodes
<@ leaves: states that can/should not be expanded
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: | Data structure LHW Chapter 13
“ | A node z has a parent, children, depth, path cost g(x)
A{ data structure for a search node
State|z] state in space state
Parent — Node[z] parent node
§ Action|x] operator used to generate node
IS Path — Cost[x] path cost of parent+cost step, path cost g(x)
\ Depth|[x] depth: # nodes from root (path length)
Nodes to be expanded
1 constitute a fringe (frontier)
52
£ 8 managed in a queue,
:;5 order of node expansion determines search strategy
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PARENT-NODE

ACTION = right
DEPTH = 6
PATH-COST = 6

Node

HH

% | Do not confuse: State space and Search (tree) space
[ What is a state?
What is the state space?
Holiday in Romania: What is the size of state space?
3
;;TE What is the size of search tree ?
£ 0
5 | A node has a parent, children, depth, path cost g(z)
:é; Qstate has no parent, children, depth, etc.. /
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Types of Search
Uninformed: use only information available in problem definition
Heuristic: exploits some knowledge of the domain
=3
Uninformed search strategies:
Breadth-first search, Uniform-cost search, Depth-first search,
Depth-limited search, Iterative deepening search, Bidirectional
= | search
52
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Search strategies

Criteria for evaluating search:
1. Completeness: does it always find a solution if one exists?
2. Time complexity: number of nodes generated /expanded
3. Space complexity: maximum number of nodes in memory

4. Optimality: does it always find a least-cost solution?

Time/space complexity measured in terms of:
e b: maximum branching factor of the search tree

e d: depth of the least-cost solution

e m: maximum depth of the search space (may be c0)
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