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/Title: Constraint Satisfaction Problems \
Required reading: AIMA: Chapter 5

Recommended reading:
— Introduction to CSPs (Bartak’s on-line guide)
— “Algorithms for Constraints Satisfaction problems: A Survey”
by Vipin Kumar. AI Magazine, Vol 13, No 1, 32-44, 1992.
— Constraint Programming: In Pursuit of the Holy Grail. Bartak

—_
Introduction to Artificial Intelligence
CSCE 476-876, Spring 2006
Ui URL: www.cse.unl.edu/ " choueiry/S06-476-876
g v Berthe Y. Choueiry (Shu-we-ri)
z% \\ choueiry@cse.unl.edu, (402)472-5444 /
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w
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Constraint Processing
e Constraint Satisfaction:
— Modeling and problem definition (Constraint Satisfaction
Problem, CSP)
. — Algorithms for constraint propagation
— Algorithms for search
e Constraint Programming: Languages and tools
— logic-based
LE — object-oriented
%% — functional
AN _/
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Courses on Constraint Processing

e Foundations of Constraint Processing, CSCE 421/821
Fall’05 URL:
Fall’04 URL:
Fall’03 URL:
Fall’02 URL:
Fall’01 URL:
Fall’l00 URL:
Fall’99 URL:

edu/~choueiry/F05-421-821/
edu/~choueiry/F04-421-821/
edu/"choueiry/F03-421-821/

.edu/~choueiry/F02-421-821/

edu/"choueiry/F01-421-821/
edu/"~choueiry/F00-CSCE990/

.edu/"choueiry/CSE990-05/

e Advanced Constraint Processing, CSCE 990-06
Spring’03 URL: cse.unl.edu/ " choueiry/S03-990-06/
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Outline

e Deeper analysis

Research directions

Problem definition and examples

Solution techniques: search and constraint propagation
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/VVhat is this about? \

Context: You are a senior in college
Problem: You need to register in 4 courses for Fall’2006

Possibilities: Many courses offered in Math, CSE, EE, etc.

Constraints: restrict the choices you can make

ot e Unary: Courses have prerequisites you have/don’t have
Courses/instructors you like/dislike
e Binary: Courses are scheduled at the same time
e n-ary: In CompEng, 4 courses from 5 tracks such as at least
5 3 tracks are covered
¢
g You have choices, but are restricted by constraints
;i \\ —— Make the right decisions /
w
< / \
¢ [ Constraint Satisfaction
£ | Given
e A set of variables 4 courses at UNL
e For each variable, a set of choices (values)
e A set of constraints that restrict the combinations of values the
variables can take at the same time
@ .
Questions
e Does a solution exist? classical decision problem
e How two or more solutions differ?” How to change specific
. choices without perturbing the solution?
2%
S e If there is no solution, what are the sources of conflicts?
5 ¢
g Which constraints should be retracted?
w8
o8 \\o etc. /
S5
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/Constraint Processing is about \

e solving a decision problem

e while allowing the user to state arbitrary constraints in an

expressive way and

e providing concise and high-level feedback about alternatives

and conflicts

~
Power of Constraints Processing
o flexibility & expressiveness of representations
) . . relax i
o e Interactivity, users can constraints
¥ reinforce
5
°3F \Selated areas: Al, OR, Algorithmic, DB, Prog. Languages, etc./
S
w
< / \
O L] L]
¢ [ Definition
Given P = (V,D,(C):
e ) a set of variables
V={V,Vo,..., Vi, }
e D a set of variable domains (domain values)
* D ={Dv,,Dy,,...,Dy,}
e (C a set of constraints
Cv, vy,.v, = {(z,y,...,2)} € Dy, x Dy, x...x Dy,
= Query: can we find one value for each variable
g; such that all constraints are satisfied?
o 8
=8 \il general, NP-complete /
S
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Terminology

Instantiating a variable: V; <— a where a € Dy,

Partial assignment

Consistent assignment

Objective function (constrained optimization problem)

Laranoyp "x-g
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Representation

V={V,Va,...,Vp,}
Given P = (V,D,C) { D= {Dy,,Dy,,...,Dy,}

C set of constraints

Cv,,v; ={(z,y)} € Dy, x Dy,

Constraint graph

vli<v2
Vi 3,67} | v2

v1l+v3 <9 V2 >va

V3 \Z!

o
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Example II: Map coloring
Using 3 colors (R, G, & B), color the US map

such that no two adjacent states do have the

same color

2<C-A<5

Variables? Domains? Constraints?

N _/ N _/

B.Y. Choueiry 11 Instructor’s notes #8 B.Y. Choueiry 12 Instructor’s notes #8
November 20, 2006 November 20, 2006

— c-A € [2, 5] is a constraint of bounded differences

Example I: Temporal reasoning
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/Incremental formulation: as a search problem

Initial state: empty assignment, all variables are unassigned

Successor function: a value is assigned to any unassigned
variable, provided that it does not conflict with previously

assigned variables (back-checking)

~

% | Goal test: The current assignment is complete (and consistent)
Path cost: a constant cost (e.g., 1) for every step, can be zero
— A solution is a complete, consistent assignment.
ozi: — Search tree has constant depth n (# of variables) — DFS!!
g § — Path for reaching a solution is irrelevant
TR
5l — A complete-state formulation is OK
o8 \: local-search techniques applicable /
g3
w
<
¢ | Domain types
V={W,Vo,..., V,}
GivenP:(V,D,C) D:{DV17DV27"'7DVn}
C set of constraints
—
= Cv,,v; ={(z,y)} € Dy, x Dy,
Domains:
— restricted to {0, 1}: Boolean CSPs
,% | — Finite (discrete): enumeration techniques works
§ § — Continuous: sophisticated algebraic techniques are needed
gd consistency techniques on domain bounds
AN /
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Constraint arity
V:{V17V27"'7Vn}
GivenP:(V,D,C) D:{DvlaDV27"'7DVn}

C set of constraints
Cvi, vi,vi, = { (2,9,2)} C Dy, x Dy, x Dy,

Constraints: universal, unary, binary, ternary, ..., global

Representation: Constraint network

Laranoyp "x-g
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Constraint language

Constraints can be defined

e Extensionally: all allowed tuples are listed

practical for defining arbitrary constraints

e Intensionally: when it is not practical (or even possible) to list
all tuples
— define types of common constraints, which can be used

repeatedly

Examples of types of constraints: linear constraints, nonlinear
constraints, Alldiff (a.k.a. mutex), Atmost, constraints of bounded

differences (e.g., in temporal reasoning), etc.

N /
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/Example III: Cryptarithmetic puzzles
Dx1 = Dx2 = Dx3 = {0,1}

Dp =Dy =Dy =Dy = Di = Do =[0,9]

T WO
+ TWO
= FOUR
@ (b)
0O+ 0=R+10X1
Li | X1+ W+ W =T+ 10X2
(2 X24+T+T-0+10X3
it | X3=F
\illdiff({F, D, U, V, R, O})
S
w
<
How to solve a CSP?
% | Search!
1. Constructive, systematic search
2. Iterative repair search
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/Systematic search \

— Starting from a root node
— Consider all values for a variable V;
— For every value for V;, consider all values for V5

— etc..

For n variables, each of domain size d:
- Maximum depth? fixed!
\—\Maximum number of paths? size of search space, size of CSP/

Laranoyp "x-g
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Back-checking
Systematic search generates d" possibilities

Are all possible combinations acceptable?

— Expand a partial solution only when consistent

— early pruning

N /




/ \ /Importance of modeling \

N-queens: formulation 1

Variables?
Domains?

Size of CSP?

N-queens: formulation 2

to control the size of the search space

to reduce size of search space

1. Importance of modeling/formulating
2. Preprocessing: consistency filtering

Before looking at search..

o .
T variables?
i
2 domains?
o .
\\ O J \ize of csp? J
B.Y. Choueiry 21 Instructor’s notes #8 B.Y. Choueiry 22 Instructor’s notes #8

November 20, 2006 November 20, 2006
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Constraint checking

— Constraint filtering, constraint checking, etc..

eliminate non-acceptable tuples prior to search

1-B:[5..14]
C: [6..15]

2-A:[2..10]
C:[6.14]

3-B:[5..13]

— Arc-Consistency:

AC(Cv, v,) = REVISE(V},V2) and REVISE(V,,V))
—— CSP is AC when all constraints are AC.
— Algorithms: AC-1, AC-2, AC-3, ..., AC-7 and back to AC-3

— AC-3: O(n2d?)
o /

Laranoyp "x-g
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Warning: arc-consistency does not solve the problem

A B A B

(A=2) N (B=3) still isn’t a solution!

e In general, constraint propagation helps, but does not solve the

problem

e As long as constraint checking is affordable (i.e., cost remains
negligible vis-a-vis cost of search), it is advantageous to apply

before

N /




Liranoyp "x-g

/Levels of consistency \

Node consistency: every value in the domain of a variable is

consistent with the unary constraints defined on the variable

Arc-consistency: For any value in the domain of any variable,
there is at least one value in the domain of any other variable

with which it is consistent.

3-consistency: For any two consistent values in the domains of

[\)
(S
any two variables, there is at least one value in the domain of
any third variable with which they are consistent.
k-consistency: (k < n)
For any (k-1) consistent values in the domains of any (k-1)
oz% variables, there is at least one value in the domain of any k"
§ § variable with which they are consistent.
TR,
é; Strong k-consistency: k-consistency Vi < k
w
<
: Chronological backtracking
What if only one solution is needed?
[\)
D
— Depth-first search & chronological backtracking|| —
L5 Terms: current variable V., past variables V,, future variables Vy,
é 5 current path
&
:;g — DFS: soundness? completeness?
L /
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Example of BT

Northern
Territory

Western
Australia
South
Australia

Do Victoria
\]
Tasmania @
— WA=red WA=red
a NT=green NT=blue
Z T
58 WA=red WA=red
o o NT=green NT=green
o Q=red Q=biue
g9 T T
o 0
w
=<
(- A
g
g
g
Backtrack(ing) search (BT)
Refer to algorithm BACKTRACKING-SEARCH
[\ .
o0 e Implementation: BACKTRACKING-SEARCH
Careful, recursive, do not implement!!
Use [Prosser 93| for iterative versions
e Variable ordering heuristic: SELECT-UNASSIGNED-VARIABLE
=
g2 e Value ordering heuristic: ORDER-DOMAIN-VALUES
£ g
5w
5E
c3
o 0
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Improving BT

General purpose methods for:
1. Variable, value ordering

2. Improving backtracking: intelligent backtracking avoids

repeating failure

3. Look-ahead techniques: constraint propagation as

instantiations are made

N _/
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Ordering heuristics
Which variable to expand first?
Exp: Vi, Vo, Dy, = {a,b,c,d}, Dy, = {a,b}

Sol: {(Vi = ¢),(Va =a)} and {(Vi = ¢),(V2 = b)}
(9 ®
'@ ® © @ vz @
v2 (&) () @0 @ b vi @ ®© @

.. most constrained variable first (reduce branching factor)
Heuristics:

most promising value first (find quickly first solution)

N /
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Examples of ordering heuristics

For variables:
e least domain (LD), aka minimum remaining values (MRV
e degree

e ratio of domain size to degree (DD)

w . .
= ° Wldth, promise, etc. [Tsang, Chapter 6]
For values:
e min-conflict [Minton, 92]

Zg e promise [Geelen, 94], etc.
::
8 g . variable ordering static
e Strategies for could be
% value ordering dynamic
A /

w

<

¢ | Intelligent backtracking

What if the reason for failure was higher up in the tree?
Backtrack to source of conflict!!

w

DN
02§r — Backjumping, conflict-directed backjumping, etc.
%% — Additional data structures that keep track of failure encountered
:,g during back-checking [Prosser, 93]
A /
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/Look—ahead strategies: partial or full \

As instantiations are made, remove the values from the domain of

future variables that are not consistent with the current path
Terminology

e V. is the current variable

e V; is the set of future variables, V is a future variable

e Instantiate V., update the domains of (some) future variables
Strategies

e Forward checking (FC): partial look-ahead

e Directed arc-consistency checking (DAC): partial look-ahead

e Maintaining Arc-Consistency (MAC): full look-ahead

— Special data structures can be used to refresh filtered domains

\ipon backtracking [Prosser, 93] /

Laranoyp "x-g
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Forward checking (FC)

— Apply REVISE(V}, V,) to the each variable V; connected to V,
— In AIMA, it is REMOVE-INCONSISTENT- VALUES(V, V)

Procedure:
e Instantiate V.

e Apply REVISE(V},V,) to the each variable V

N /
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Direct Arc-Consistency (DAC)

— Repeat forward checking on all V¢ € V¢ while respecting order

— Applicable under static ordering

Procedure:
e Choose a variable ordering
e Instantiate V.
e Apply FC to V,

e Move to next variable V¢ in ordering, and apply FC to V.
Repeat for all variables in V; in the specified order.

N _/
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Maintaining Arc-Consistency (MAC)

— Maintain AC in the subproblem induced by V; U{V,}

— In practice, useful when problem has few, tight constraints

Procedure:

e Instantiate V.

o Apply AC-3(Vy U{V,})
Every constraint revision uses two operations: REVISE(V,, V})
and REVISE(V}, V)

Updates domains of all variables in subproblems

N /
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CSP: a decision problem (NP-complete)
1- Modeling:

— abstraction and reformulation

2- Preprocessing techniques:

— eliminate non-acceptable tuples prior to search

3- Search:

— potentially d” paths of fixed length

— chronological backtracking

— variable/value ordering heuristics

— intelligent backtracking

4- Search ‘hybrids’:

— Mixing preprocessing with search: FC, DAC, MAC

N
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/N on-systematic search \

e Methodology: Iterative repair, local search: modifies a global
but inconsistent solution to decrease the number of violated

constraints

e Example: MIN-CONFLICTS algorithm in Fig 5.8, page 151.
Choose (randomly) a variable in a broken constraint, and
change its value using the min-conflict heuristic (which is a
value ordering heuristic)

e Other examples: Hill climbing, taboo search, simulated

annealing, etc.

— Anytime algorithm
— Strategies to avoid getting trapped: RandomWalk
— Strategies to recover: Break-Out, Random restart, etc.

\\—> Incomplete & not sound /

017 Laranoyp "x-g
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/Deep analysis: Uncover particular properties, e.g. \
- bounds the required level of consistency

- predicts ease/difficulty of solving a given instance
e C-graph topology: tree (see Section 5.4), chordal, etc.

e Constraints type: Alldiffs, Atmost, functional, monotonic,

row-convex, subsets of Allen’s relations, etc.

e Order parameter (phase transition)

Cost of finding
Probability of the asolution

existence of asolution

Critical value Order parameter
\\ of order parameter /
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Exploiting structure: example of deep analysis

# | Tree-structured CSP
e Cycle-cutset method
e Tree-decomposition method (not discussed, Yaling’s research)
3
$s
5
5 ¢
g
5
L /
w
<
Tree-structured CSP
Any tree-structured CSP can be solved in time linear in the number
of variables.
S
[\
e Apply arc-consistency (directional arc-consistency is enough)
e Proceed instantiating the variables from the root to the leaves
e The assignment can be done in a backtrack-free manner
5
g; e Runs in O(nd?), n is #variables and d domain size.
5 8
L /
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/Cycle-cutset method \

1. Identify a cycle cutset S in the CSP (nodes that when removed
yield a tree), the remaining variables form the set T

2. Find a solution to the variables in S (S is smaller than initial

problem)

3. For every consistent solution for variables in S:
e Apply DAC from S to T
e If no domain is wiped out, solve T' (quick) and you have a
solution to the CSP
Note:

e For a cycle cutset |S| = ¢, time is O(d®.(n — ¢)d?). If graph is
nearly a tree, c is small, and savings are large. In the

worst-case, c =n — 2 (.

\\o Finding the smallest cutset is NP-hard :—( /

900% ‘0% I1equLAON
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ﬁl‘ree decomposition (tree-clustering) \

Cluster the nodes of the CSP into subproblems, which are

organized in a tree structure:
e Every variable appears in at least one subproblem

e If 2 variables are connected by a constraint, they must appear
together (along with the constraint) in at least one subproblem

e If a variable appears in 2 subproblems, it must appear in every

suproblem along the path between the 2 subproblems.
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/Solving the tree decomposition (tree—clustering)\

e Each subproblem is a meta-variable, whose domain is the set of
all solutions to the subproblem.

e Choose a subproblem, find all its solutions.

e Solve the constraints connecting the subproblem and its
neighbors (common variables must agree).

e Repeat the process from a node to its descendant.

e Complexity depends on w, the tree width of the decomposition
— number of nodes in largest subproblem - 1. Tt is O(nd¥*1).

e Thus, CSPs with a constraint graph of bounded w can be

solved in polynomial time.

e Finding the decomposition with minimal tree width in

\\ NP-hard.. /

917 Laranoyp "x-g
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/Research directions \

Preceding (i.e., search, backtrack, iterative repair, V/V /ordering,
consistency checking, decomposition, symmetries & interchangeability,

deep analysis) + ...

Evaluation of algorithms:
worst-case analysis vs. empirical studies

random problems?

Cross-fertilization:
SAT, DB, mathematical programming,

interval mathematics, planning, etc.
Modeling & Reformulation

Multi agents:

Distribution and negotiation

\\ — decomposition & alliance formation /
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CSP in a nutshell ()

. . constructive
Solution technique: Search

iterative repair
intelligent backtrack
variable/value ordering

consistency checking

hybrid search

Enhancing search:

QO symmetries

QO decomposition

N _/
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CSP in a nutshell (II)

QO graph topology
Deep analysis: exploit problem structure { Q constraint semantics

phase transition

k-ary constraints, soft constraints
continuous vs. finite domains
evaluation of algorithms (empirical)
Research: [
cross-fertilization (mathematical program.)

O reformulation and approximation

O architectures (multi-agent, negotiation)

N /
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Constraint Logic Programming (CLP)

A merger of
v Constraint solving

— Logic Programming, mostly Horn clauses (e.g., Prolog)

900% ‘0% I1equLAON
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> | Building blocks
e Constraint: primitives but also user-defined
- cumulative/capacity (linear ineq), MUTEX, cycle, etc.
- domain: Booleans, natural/rational /real numbers, finite
oz% e Rules (declarative): a statement is a conjunction of constraints
< g
g3 and is tested for satisfiability before execution proceeds further
TR
?5 e Mechanisms: satisfiability, entailment, delaying constraints
w
<

Your future: jobs

Commercial companies: 2 Technologies, Ilog, PeopleSoft /Red

Pepper, Honeywell, Xerox Corp, etc.

Prestigious research centers: NASA Ames, JPL, BT Labs
(UK), IBM Watson-+Almaden, etc.

Start your own: 72 technologies started as a small group of

researchers doing constraint-based scheduling

Academic: constraint languages, modeling, representation,

automated reasoning, etc.

N /
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/Constraint Processing Techniques are the basis of new \
languages:

Were you to ask me which programming paradigm is likely to
gain most in commercial significance over the next 5 years I'd
have to pick Constraint Logic Programming (CLP), even though
it’s perhaps currently one of the least known and understood.
That’s because CLP has the power to tackle those difficult
combinatorial problems encountered for instance in job
scheduling, timetabling, and routing which stretch conventional
programming techniques beyond their breaking point.

Though CLP 1is still the subject of intensive research, it’s

already being used by large corporations such as manufacturers
Michelin and Dassault, the French railway authority SNCF,
airlines Swissair, SAS and Cathay Pacific, and Hong Kong

International Terminals, the world’s largest privately-owned

Byte, Dick Pountay

container terminal.




