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Context
e In an MAS, agents affect each other’s welfare

e Environment can be cooperative or competitive

(J8]
e Competitive environments yield adverserial search problems
(games)
e Approaches: mathematical game theory and Al games
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Game theory vs. Al
e Al games: fully observable, deterministic environments, players
alternate, utility values are equal (draw) or opposite
(winner /loser)
In vocabulary of game theory: deterministic, turn-taking,
= two-player, zero-sum games of perfect information
e Games are attractive to Al: states simple to represent, agents
restricted to a small number of actions, outcome defined by
simple rules
3 Not croquet or ice hockey, but typically board games
§§, Exception: Soccer (Robocup www.robocup.org/)
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Board game playing: an appealing target of Al research

Board game: Chess (since early AI), Othello, Go, Backgammon,
etc.

~

ot | - Basy to represent
- Fairly small numbers of well-defined actions
- Environment fairly accessible
- Good abstraction of an enemy, w/o real-life (or war) risks :—)
3
zg But also: Bridge, ping-pong, etc.
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° | Characteristics
e ‘Unpredictable’ opponent: contingency problem
(interleaves search and execution)
e Not the usual type of ‘uncertainty’:
no randomness/no missing information (such as in traffic)
D
but, the moves of the opponent expectedly non benign
e Challenges:
- huge branching factor
- large solution space
?; - Computing optimal solution is infeasible
c
=3 - Yet, decisions must be made. Forget A*...
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Discussion
e What are the theoretically best moves?
~
e Techniques for choosing a good move when time is tight
y/ Pruning: ignore irrelevant portions of the search space
x Evaluation function: approximate the true utility of a state
without doing search
5
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¢ [ Two-person Games
£ | -2 player: Min and Max
- Max moves first
- Players alternate until end of game
- Gain awarded to player/penalty give to loser
Game as a search problem:
o
e Initial state: board position & indication whose turn it is
e Successor function: defining legal moves a player can take
Returns {(move, state)*}
= e Terminal test: determining when game is over
z; states satisfy the test: terminal states
0’: e Utility function (a.k.a. payoff function): numerical value for
:% \\ outcome e.g., Chess: win—=1, loss=-1, draw=0 /
g3
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Max finds a sequence of operators yielding a terminal goal scoring

sual search

winner according to the utility function

Game search

e Min actions are significant

© Max must find a strategy to win regardless of what Min does:
— correct action for Max for each action of Min
e Need to approximate (no time to envisage all possibilities
difficulty): a huge state space, an even more huge search space
A 10*° different legal positions
: e.g., chess:
fg Average branching factor—35, 50 moves/player— 35'°°
&
2E e Performance in terms of time is very important
&
=<
¢ Example: Tic-Tac-Toe
b Max has 9 alternative moves
Terminal states’ utility: Max wins=1, Max loses = -1, Draw = 0
MAX (x)
MIN (o) £ X | x X X
5 r\ X X X
X|0 X |0 X
MAX (x) 0
X[O|X X|O X|O
MIN (o) X X
3
2t I N
g X[O|X X|0[X] |X]|O|X cee
& o TERMINAL [ [o[x] [o[o]x] []x
%) g o X]X]O] |X]O]O
: g Utility -1 0 +1
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Example: 2-ply game tree

Max’s actions: ai, as, ag

Min’s actions: by, bo, bs

MAX
—
—_
MIN
by
i /\
B 3 12 8 2 4 6 14 5 2
c
28
) Minimax algorithm determines the optimal strategy for Max
=n
Eg — decides which is the best move
w
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Minimax algorithm
- Generate the whole tree, down to the leaves
- Compute utility of each terminal state
- Tteratively, from the leaves up to the root, use utility of nodes at
depth d to compute utility of nodes at depth (d — 1):
ro MIN ‘row’: minimum of children
MAX ‘row’: maximum of children
MINIMAX-VALUE (n)
UTILITY(n) if n is a terminal node
g MAT s Suce(n) MINIMAX-VALUE(s) if n is a Max node
§§, MiNseSuce(n) MINIMAX-VALUE(s)  if n is a Min node
AN /
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Minimax decision

e MAX’s decision: minimax decision maximizes utility under the

assumption that the opponent will play perfectly to his/her

own advantage

—_
w
e Minimax decision maximes the worst-case outcome for Max
(which otherwise is guaranteed to do better)
e If opponent is sub-optimal, other strategies may reach better
5 outcome better than the minimax decision
2
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Minimax algorithm: Properties
e m maximum depth
b legal moves
—_
e e Using Depth-first search, space requirement is:
O(bm): if generating all successors at once
O(m): if considering successors one at a time
e Time complexity O(b™)
% Real games: time cost totally unacceptable
28
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Multiple players games
UTILITY(n) becomes a vector of the size of the number of players

For each node, the vector gives the utility of the state for each

_. | player
ot to move
A
B
3 C
= A
E 1,26 (4,23 (61,2 (741 (61,1 (@152 (771 (545
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Alliance formation in multiple players games
How about alliances?
e A and B in weak positions, but C in strong position
- A and B make an alliance to attack C (rather than each other
D
— Collaboration emerges from purely selfish behavior!
e Alliances can be done and undone (careful for social stigmal)
e When a two-player game is not zero-sum, players may end up
) automatically making alliances (for example when the terminal
25 state maximizes utility of both players)
AN /
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Alpha-beta pruning
e Minimax requires computing all terminal nodes: unacceptable

e Do we really need to do compute utility of all terminal nodes?
... No, says John McCarthy in 1956:

It 1s possible to compute the correct minimazx decision without
looking at every node in the tree, and yet get the correct

decision

e Use pruning (eliminating useless branches in a tree)
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/Example of alpha-beta pruning \

\iry 14, 5, 2, 6 below D /
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/General principal of Alpha-beta pruning

— a parent node of n
If Player has a better choice m at parent 1

— any choice point further up

n will never be reached in actual play

~

Player
—
©
Opponent
Player
— Opponent
5
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3 Once we have found enough about n (e.g., through one of it
& o descendants), we can prune it (i.e., discard all its remaining
=g
e descendants)
S
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£ Mechanism of Alpha-beta pruning
s
a: value of best choice so far for MAX, (maximum)
(: value of best choice so far for MIN, (minimum)
Player
[\)
S
Opponent
Player
Opponent
3
£l Alpha-beta search:
z 4 ,
;" - updates the value of «, (3 as it goes along
S - prunes a subtree as soon as its worse then current « or 3
=5
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Effectiveness of pruning

Effectiveness of pruning depends on the order of new nodes

examined

[\)
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) Savings in terms of cost
e Ideal case:
Alpha-beta examines O(b%?) nodes (vs. Minimax: O(b%))
— Effective branching factor v/b (vs. Minimax: b)
X
e Successors ordered randomly:
b > 1000, asymptotic complexity is O((b/log b)?)
b reasonable, asymptotic complexity is O(b3%/4)
§§ e Practically: Fairly simple heuristics work (fairly) well
i\ _/




