Title: Informed Search Methods

Required reading: AIMA, Chapter 4 (Sections 4.1, 4.2, & 4.3)

LWH: Chapter 13 and 14.

Introduction to Artificial Intelligence CSCE 476-876, Spring 2006

URL: www.cse.unl.edu/~choueiry/S06-476-876

Berthe Y. Choueiry (Shu-we-ri) choueiry@cse.unl.edu, (402)472-5444

Instructor's notes #7 February 15, 2006

B.Y. Choueiry

Outline

- Categorization of search techniques
- Ordered search (search with an evaluation function)
- Best-first search:
 - (1) Greedy search
- $(2) A^*$

2

- Admissible heuristic functions:
 - how to compare them?
 - how to generate them?
 - how to combine them?
- Iterative improvement search:
 - (1) Hill-climbing
- (2) Simulated annealing

Types of Search (I)

- 1- Uninformed vs. informed
- 2- Systematic/constructive vs. iterative improvement

ಲ

Uninformed:

use only information available in problem definition, no idea about distance to goal

 \rightarrow can be incredibly ineffective in practice

Heuristic:

exploits some knowledge of the domain also useful for solving optimization problems

Instructor's notes #7 February 15, 2006

B.Y. Choueiry

Types of Search (II)

Systematic, exhaustive, constructive search:

a partial solution is incrementally extended into global solution

4

Partial solution =

sequence of transitions between states

Global solution =

Solution from the initial state to the goal state

Examples:

Uninformed Informed (heuristic): Greedy search, A^*

→ Returns the path; solution = path

B.Y. Choueiry

Types of Search (III)

Iterative improvement:

A state is gradually modified and evaluated until reaching an (acceptable) optimum

ರಾ

- → We don't care about the path, we care about 'quality' of state
- \rightarrow Returns a state; a solution = good quality state
- \rightarrow Necessarily an informed search

Instructor's notes #7 February 15, 2006 Examples (informed):

Hill climbing

Simulated Annealing (physics), Taboo search Genetic algorithms (biology)

B.Y. Choueiry

Ordered search

- Strategies for systematic search are generated by choosing which node from the fringe to expand first
- The node to expand is chosen by an <u>evaluation function</u>, expressing 'desirability' \longrightarrow <u>ordered search</u>

6

• When nodes in queue are sorted according to their decreasing values by the evaluation function \longrightarrow best-first search

• Warning: 'best' is actually 'seemingly-best' given the evaluation function. Not always best (otherwise, we could march directly to the goal!)

Search using an evaluation function

• Example: uniform-cost search!

What is the evaluation function?

Evaluates cost from to?

• How about the cost <u>to</u> the goal?

 $h(n) = \underline{\text{estimated}} \text{ cost of the cheapest}$ path from the state at node n to a goal state

h(n) would help focusing search

Instructor's notes #7 February 15, 2006

B.Y. Choueiry

 ∞

Cost to the goal

Lugoj

This information is <u>not</u> part of the problem description

244

Arad	366	Mehadia	241
Bucharest	0	Neamt	234
Craiova	160	Oradea	380
Dobreta	242	Pitesti	100
Eforie	161	Rimnicu Vilcea	193
Fagaras	176	Sibiu	253
Giurgiu	77	Timisoara	329
Hirsova	151	Urziceni	80
Iasi	226	Vaslui	199

Zerind

374

Best-first search

- 1. Greedy search chooses the node n closest to the goal such as h(n) is minimal
- 2. A^* search chooses the least-cost solution

solution cost f(n) $\begin{cases} g(n): \text{ cost from root to a given node } n \\ + \\ h(n): \text{ cost from the node } n \text{ to the goal node} \end{cases}$

such as f(n) = g(n) + h(n) is minimal

Instructor's notes #7 February 15, 2006

B.Y. Choueiry

Greedy search

- → First expand the node whose state is 'closest' to the goal!
- \rightarrow Minimize h(n)

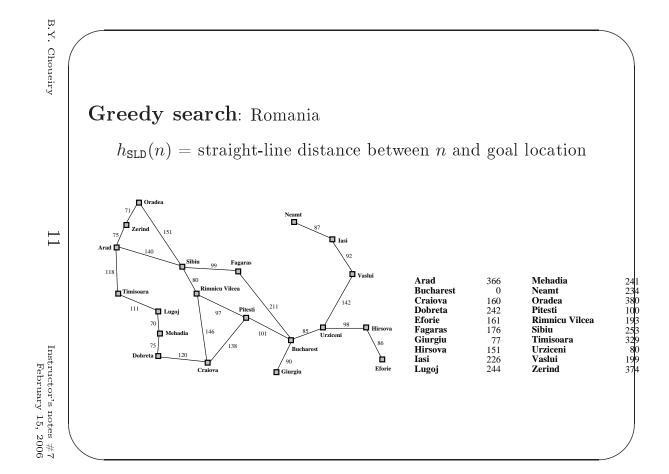
Eval-Fn, an evaluation function

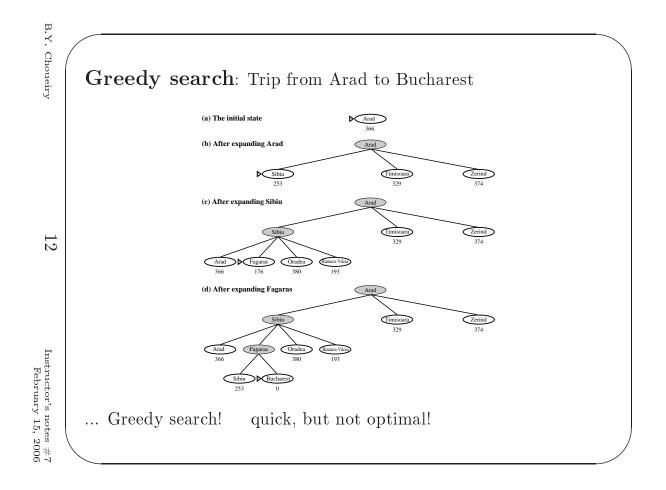
Queueing-Fn \leftarrow a function that orders nodes by EVAL-FN **return** GENERAL-SEARCH(*problem*, *Queueing-Fn*)

10

- → Usually, cost of reaching a goal may be <u>estimated</u>, not determined exactly
- \rightarrow If state at n is goal, h(n) =
- \rightarrow How to choose h(n)?

Problem specific! Heuristic!





Greedy search: Properties

- \rightarrow Like depth-first, tends to follow a single path to the goal
- \rightarrow Like depth-first $\begin{cases} \text{Not complete} \\ \text{Not optimal} \end{cases}$
- \rightarrow Time complexity: $O(b^m)$, m maximum depth
- \rightarrow Space complexity: $O(b^m)$ retains all nodes in memory
- ightarrow Good h function (considerably) reduces space and time but h functions are problem dependent :—(

Hmm...

Greedy search minimizes estimated cost to goal h(n)

- \rightarrow cuts search cost considerably
- → but not optimal, not complete

Uniform-cost search minimizes cost of the path so far g(n)

- \rightarrow is optimal and complete
- \rightarrow but can be wasteful of resources

New-Best-First search minimizes f(n) = g(n) + h(n)

- \rightarrow combines greedy and uniform-cost searches f(n)= estimated cost of cheapest solution via n
- \rightarrow Provably: complete and optimal, if h(n) is admissible

Instructor's notes #7
February 15, 2006

A^* Search

• A* search

Best-first search expanding the node in the fringe with minimal f(n) = g(n) + h(n)

- A* search with admissible h(n)Provably complete, optimal, and optimally efficient using TREE-SEARCH
- A* search with consistent h(n)Remains optimal even using Graph-Search

(See Tree-Search page 72 and Graph-Search page 83)

B.Y. Choueiry

16

Admissible heuristic

An admissible heuristic is a heuristic that never overestimates the cost to reach the goal

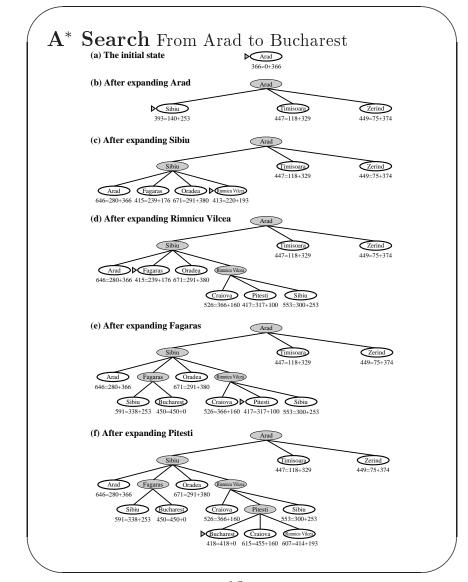
is optimistic

thinks the cost of solving is less than it actually is

Example: { travel: straight line distance | Example: { I can finish college in 3 years | We can fly to Mars by 2003

If h is admissible,

 $\frac{\text{dmissible}}{(n) \text{ never overestimates}} \text{ the actual cost of } \\ \\ \text{ne best solution through } n.$



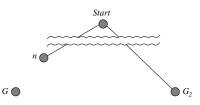
A* Search is optimal

 $G, G_2 \text{ goal states} \Rightarrow g(G) = f(G), f(G_2) = g(G_2)$

G optimal goal state $\Rightarrow C^* = f(G)$

$$G_2 \text{ suboptimal } \Rightarrow f(G_2) > C^* = f(G)$$
 (1)

Suppose n is not chosen for expansion



 $h \text{ admissible} \Rightarrow C^* \ge f(n)$ (2)

Since n was not chosen for expansion $\Rightarrow f(n) \ge f(G_2)$ (3)

$$(2) + (3) \Rightarrow C^* \ge f(G_2) \tag{4}$$

(1) and (4) are contradictory $\Rightarrow n$ should be chosen for expansion

Instructor's notes #7 February 15, 2006

Which nodes does A^* expand?

Goal-Test is applied to State(node) when a node is $\frac{\text{chosen from the fringe}}{\text{generated}}$ for expansion, $\frac{\text{not}}{\text{when the node is}}$

Theorem 3 & 4 in Pearl 84, original results by Nilsson

- Necessary condition: Any node expanded by A* cannot have an f value exceeding C^* : For all nodes expanded, $f(n) \leq C^*$
- Sufficient condition: Every node in the fringe for $f(n) < C^*$ will eventually be expanded by A^*

In summary

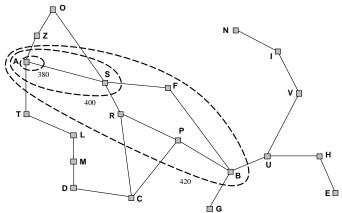
- A* expands all nodes with $f(n) < C^*$
- A* expands some nodes with $f(n) = C^*$
- A* expands no nodes with $f(n) > C^*$

B.Y. Choueiry

20

Expanding contours

 A^* expands nodes from fringe in increasing f value We can conceptually draw contours in the search space



The first solution found is necessarily the optimal solution Careful: a Test-Goal is applied at node expansion

B.Y. Choueiry

A* Search is complete

Since A* search expands all nodes with $f(n) < C^*$, it must eventually reach the goal state unless there are infinitely many

- nodes $f(n) < C^* \begin{cases} 1. \ \exists \ \text{a node with infinite branching factor} \\ \text{or} \\ 2. \ \exists \ \text{a path with infinite number of nodes along it} \end{cases}$

Instructor's notes #7 February 15, 2006

A* is complete if $\left\{ \begin{array}{l} \text{on locally finite graphs} \\ \text{and} \\ \\ \exists \delta>0 \text{ constant, the cost of each operator}>\delta \end{array} \right.$

Instructor's notes #7 February 15, 2006

A* Search Complexity

Time:

Exponential in (relative error in $h \times length$ of solution path) ... quite bad

Space: must keep all nodes in memory

Number of nodes within goal contour is exponential in length of solution.... unless the error in the heuristic function $|h(n)-h^*(n)| \text{ grows no faster than the log of the actual path cost: } |h(n)-h^*(n)| \leq O(\log h^*(n))$

In practice, the error is proportional... impractical..
major drawback of A*: runs out of space quickly

→ Memory Bounded Search IDA*(not addressed here)

B.Y. Choueiry

A* Search is optimally efficient

24

.. for any given evaluation function: no other algorithms that finds the optimal solution is guaranteed to expend fewer nodes than A^*

<u>Interpretation</u> (proof not presented): Any algorithm that does not expand all nodes between root and the goal contour risks missing the optimal solution

Tree-Search vs. Graph-Search

After choosing a node from the fringe and before expanding it, Graph-Search checks whether State(node) was visited before to avoid loops.

25

→ Graph-search may lose optimal solution

Solutions

- 1. In Graph-Search, discard the more expensive path to a node
- 2. Ensure that the optimal path to any repeated state is the first one found
 - $\rightarrow \, {\rm Consistency}$

B.Y. Choueiry

Instructor's notes #7 February 15, 2006

Consistency

h(n) is consistent

If $\forall n \text{ and } \forall n' \text{ successor of } n \text{ along a path, we have}$ $h(n) \leq k(n, n') + h(n'), k \text{ cost of cheapest path from } n \text{ to } n'$

Monotonicity

26

h(n) is monotone

If $\forall n \text{ and } \forall n' \text{ successor of } n \text{ generated by action } a$, we have $h(n) \leq c(n, a, n') + h(n')$, n' is an <u>immediate</u> successor of n Triangle inequality $(\langle n, n', \text{ goal} \rangle)$

Important: h is consistent $\Leftrightarrow h$ is monotone

Beware: of confusing terminology 'consistent' and 'monotone' Values of h not necessarily decreasing/nonincreasing

Properties of h: Important results

• h consistent $\Leftrightarrow h$ monotone

(Pearl 84)

27

Instructor's notes #7 February 15, 2006

- h consistent $\Rightarrow h$ admissible (AIMA, Exercise 4.7) consistency is stricter than admissibility
- h consistent $\Rightarrow f$ is nondecreasing $f(n') = g(n') + h(n') = g(n) + c(n, a, n') + h(n') \ge g(n) + h(n) = f(n)$
- h consistent $\Rightarrow A^*$ using Graph-Search is optimally efficient

B.Y. Choueiry

Pathmax equation

 $You\ may\ ignore\ this\ slide$

Monotonicity of f: values along a path are nondecreasing When f is not monotonic, use **pathmax** equation

$$f(n') = max(f(n), q(n') + h(n'))$$

28

 \mathbf{A}^* never decreases along any path out from root

$$g(n) = 3$$

$$h(n) = 4$$

$$g(n') = 4$$

$$h(n') = 2$$

Pathmax

- guarantees f nondecreasing
- \bullet does not guarantee h consistent
- ullet does not guarantee $A^* + GRAPH$ -Search is optimally efficient

Instructor's notes #7 February 15, 2006

Summarizing definitions for A*

- ullet A* is a best-first search that expands the node in the fringe with minimal f(n) = g(n) + h(n)
- An admissible function h never overestimates the distance to the goal.
- h admissible $\Rightarrow A^*$ is complete, optimal, optimally efficient using TREE-SEARCH
- h consistent $\Leftrightarrow h$ monotone $h \text{ consistent} \Rightarrow h \text{ admissible}$ $h \text{ consistent} \Rightarrow f \text{ nondecreasing}$
- h consistent $\Rightarrow A^*$ remains optimal using Graph-Search

B.Y. Choueiry

Admissible heuristic functions

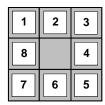
Examples

- Route-finding problems: straight-line distance
- 8-puzzle: $\begin{cases} h_1(n) = \text{number of misplaced tiles} \\ h_2(n) = \text{total Manhattan distance} \end{cases}$

30

6 1 8 7 3 2	5	4	
7 3 2	6	1	8
	7	3	2

Start State



Goal State

$$egin{array}{c} egin{array}{c} h_1(S) = ? \ h_2(S) = ? \end{array}$$

Performance of admissible heuristic functions

ಬ

Two criteria to compare <u>admissible</u> heuristic functions:

- 1. Effective branching factor: b^*
- 2. Dominance: number of nodes expanded

Instructor's notes #7 February 15, 2006

B.Y. Choueiry

Effective branching factor b^*

- The heuristic expands N nodes in total
- The solution depth is d

32

 $\longrightarrow b^*$ is the branching factor had the tree been uniform

$$N = 1 + b^* + (b^*)^2 + \ldots + (b^*)^d = \frac{(b^*)^{d+1} - 1}{b^* - 1}$$

- Example: $N=52, d=5 \rightarrow b^* = 1.92$

Dominance

If $h_2(n) \ge h_1(n)$ for all n (both admissible) then h_2 <u>dominates</u> h_1 and is better for search

Typical search costs: nodes expanded

Sol. depth	IDS	$\mathbf{A}^*(h_1)$	$\mathbf{A}^*(h_2)$
d = 12	3,644,035	227	73
d = 24	too many	39.135	1.641

A* expands all nodes $f(n) < C^* \Rightarrow g(n) + h(n) < C^*$ $\Rightarrow h(n) < C^* - g(n)$

If $h_1 \leq h_2$, A* with h_1 will always expand at least as many (if not more) nodes than A* with h_2

 \longrightarrow It is always better to use a heuristic function with higher values, as long as it does not overestimate (remains admissible)

Instructor's notes #7
February 15, 2006

B.Y. Choueiry

34

How to generate admissible heuristics?

 \rightarrow Use exact solution cost of a relaxed (easier) problem

Steps:

- Consider problem P
- Take a problem P' easier than P
- Find solution to P'
- Use solution of P' as a heuristic for P

Relaxing the 8-puzzle problem

A tile can move mode square A to square B if
A is (horizontally or vertically) adjacent to B and B is blank

- 1. A tile can move from square A to square B if A is adjacent to B The rules are relaxed so that a tile can move to any adjacent square: the shortest solution can be used as a heuristic $(\equiv h_2(n))$
- 2. A tile can move from square A to square B if B is blank Gaschnig heuristic (Exercice 4.9, AIMA, page 135)
- 3. A tile can move from square A to square B

 The rules of the 8-puzzle are relaxed so that a tile can move anywhere: the shortest solution can be used as a heuristic $(\equiv h_1(n))$

Instructor's notes #7February 15, 2006

B.Y. Choueiry

An admissible heuristic for the TSP

ಲ

Let path be *any* structure that connects all cities \implies minimum spanning tree heuristic (polynomial)

(Exercice 4.8, AIMA, page 135)

Combining several admissible heuristic functions

We have a set of admissible heuristics $h_1, h_2, h_3, \ldots, h_m$ but no heuristic that dominates all others, what to do?

$$\longrightarrow h(n) = \max(h_1(n), h_2(n), \dots, h_m(n))$$

h is admissible and dominates all others.

→ Problem:

Cost of computing the heuristic (vs. cost of expanding nodes)

Instructor's notes #7 February 15, 2006

B.Y. Choueiry

Using subproblems to derive an admissible heuristic function

Goal: get 1, 2, 3, 4 into their correct positions, ignoring the 'identity' of the other tiles

38

Cost of optimal solution to subproblem used as a lower bound (and is substantially more accurate than Manhattan distance)

Pattern databases:

- Identify patterns (which represent several possible states)
- Store cost of <u>exact</u> solutions of patterns
- During search, retrieve cost of pattern and use as a (tight) estimate

Cost of building the database is amortized over 'time'

B.Y. Choueiry

Iterative improvement (a.k.a. local search)

— Sometimes, the 'path' to the goal is irrelevant only the state description (or its quality) is needed

35

Iterative improvement search

- choose a single current state, sub-optimal
- gradually modify current state
- generally visiting 'neighbors'
- until reaching a near-optimal state

Example: complete-state formulation of N-queens

Instructor's notes #7 February 15, 2006

B.Y. Choueiry

Main advantages of local search techniques

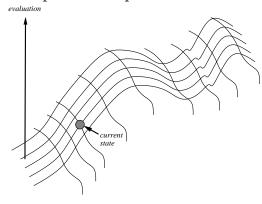
40

- 1. Memory (usually a constant amount)
- 2. Find reasonable solutions in large spaces where we cannot possibly search the space exhaustively
- 3. Useful for optimization problems:
 best state given an objective function (quality of the goal)

B.Y. Choueiry

4

Instructor's notes #7 February 15, 2006 Intuition: state-scape landscape



- All states are layed up on the surface of a landscape
- A state's location determines its neighbors (where it can move)
- A state's elevation represents its quality (value of objective function)
- Move from one neighbor of the current state to another state until reaching the highest peak

B.Y. Choueiry

Two major classes

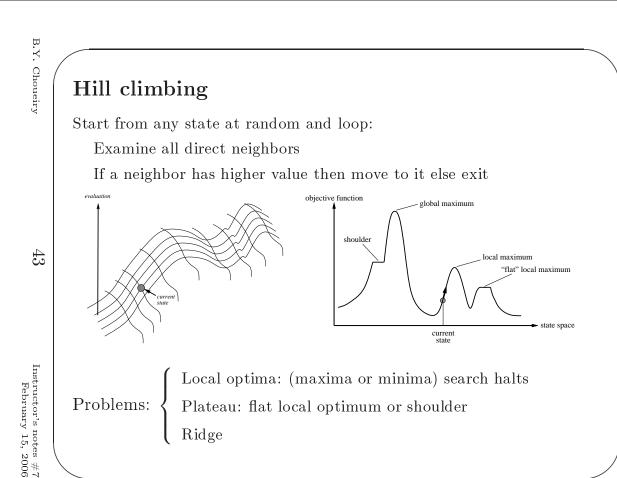
- 1. Hill climbing (a.k.a. gradient ascent/descent)
 - → try to make changes to improve quality of current state
- 2. Simulated Annealing (physics)
 - \rightarrow things can temporarily get worse

42

Others: tabu search, local beam search, genetic algorithms, etc.

- → Optimality (soundness)? Completeness?
- \longrightarrow Complexity: space? time?
- \longrightarrow In practice, surprisingly good..

(eroding myth)



Instructor's notes #7
February 15, 2006

Plateaux

Allow sideway moves
objective function
global maximum
local maximum
"flat" local maximum

current

- For shoulder, good solution
- For flat local optima, may result in an infinite loop Limit number of moves

Ridges

Sequence of local optima that is difficult to navigate

45

Instructor's notes #7
February 15, 2006

B.Y. Choueiry

Variants of Hill Climbing

46

• Stochastic hill climbing: random walk Choose to disobey the heuristic, sometimes Parameter: How often?

- First-choice hill climbing
 Choose first best neighbor examined
 Good solution when we have too many neighbors
- Random-restart hill climbing
 A series of hill-climbing searches from random initial states

Instructor's notes #7 February 15, 2006

Random-restart hill-climbing

- → When HC halts or no progress is made re-start from a different (randomly chosen) starting save best results found so far
- \rightarrow Repeat random restart
 - for a fixed number of iterations, or
 - until best results have not been improved for a certain number of iterations

B.Y. Choueiry

48

Simulated annealing (I)

Basic idea: When stuck in a local maximum allow few steps towards less good neighbors to escape the local maximum

Start from any state at random, start count down and loop until time is over:

Pick up a neighbor at random

Set $\Delta E = value(neighbor) - value(current state)$

If $\Delta E > 0$ (neighbor is better)

then move to neighbor

else $\Delta E < 0$ move to it with probability < 1

Instructor's notes #7 February 15, 2006

Transition probability $\simeq e^{\Delta E/T} \left\{ \begin{array}{l} \Delta {\rm E~is~negative} \\ {\rm T:~count\text{-}down~time} \end{array} \right.$

as time passes, less and less likely to make the move towards 'unattractive' neighbors

B.Y. Choueiry

How about decision problems?

50

Optimization problems Decision problems

 $\ \, \text{Iterative improvement} \quad \longleftrightarrow \quad \text{Iterative repair} \\$

State value \longleftrightarrow Number of constraints violated

Sub-optimal state \longleftrightarrow Inconsistent state

Optimal state \longleftrightarrow Consistent state

Local beam search

- \bullet Keeps track of k states
- Mechanism:

Begins with k states

At each step, all successors of all k states generated Goal reached? Stop.

Otherwise, selects k best successors, and repeat.

- Not exactly a k restarts: k runs are not independent
- Stochastic beam search increases diversity

Instructor's notes #7
February 15, 2006

B.Y. Choueiry

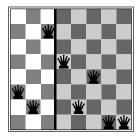
Genetic algorithms

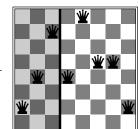
- Basic concept: combines two (parent) states
- Mechanism:

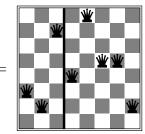
Starts with k random states (population)

Encodes individuals in a compact representation (e.g., a string in an alphabet)

Combines partial solutions to generate new solutions (next generation)







7.6

Important components of a genetic algorithm



53

- Fitness function ranks a state's quality, assigns probability for selection
- Selection randomly chooses pairs for combinations depending on fitness
- Crossover point randomly chosen for each individual, offsprings are generated
- Mutation randomly changes a state