Laanoyp “x'g

-

Title: Informed Search Methods
Required reading: AIMA, Chapter 4 (Sections 4.1, 4.2, & 4.3)

LWH: Chapter 13 and 14.

~

- Introduction to Artificial Intelligence
CSCE 476-876, Spring 2006
URL: www.cse.unl.edu/"choueiry/S06-476-876
WE Berthe Y. Choueiry (Shu-we-ri)
g § choueiry@cse.unl.edu, (402)472-5444
AN /
w
<
| Outline
e Categorization of search techniques
e Ordered search (search with an evaluation function)
e Best-first search:
(1) Greedy search (2) A*
[\)
e Admissible heuristic functions:
how to compare them?
how to generate them?
. how to combine them?
=}
53 e [terative improvement search:
g g (1) Hill-climbing (2) Simulated annealing
"
AN /

Laranoyp "x'g

-

Types of Search (1)

1- Uninformed vs. informed

2- Systematic/constructive vs. iterative improvement

w | Uninformed :
use only information available in problem definition,
no idea about distance to goal
— can be incredibly ineffective in practice
= Heuristic :
5; exploits some knowledge of the domain
g g also useful for solving optimization problems
=8
2\ J
w
<
: | Types of Search (II)
Systematic, exhaustive, constructive search:
a partial solution is incrementally extended into global solution
Partial solution =
H sequence of transitions between states
Global solution =
Solution from the initial state to the goal state
Uninformed
= Examples:
i Informed (heuristic): Greedy search, A*
o
;5 — Returns the path; solution = path

Laranoyp "x'g

4 h

Types of Search (I1I)

Iterative improvement:
A state is gradually modified and evaluated until
reaching an (acceptable) optimum

— We don’t care about the path, we care about ‘quality’ of state

ot
— Returns a state; a solution = good quality state
— Necessarily an informed search
. Hill climbing
o)
5; Examples (informed):¢ Simulated Annealing (physics), Taboo search
g g Genetic algorithms (biology)
58
AN /
w
<
¢ | Ordered search
e Strategies for systematic search are generated by choosing which
node from the fringe to expand first
e The node to expand is chosen by an evaluation function,
expressing ‘desirability’ — ordered search
D
e When nodes in queue are sorted according to their decreasing
values by the evaluation function — best-first search
qi e Warning: ‘best’ is actually ‘seemingly-best’ given the evaluation
o g
g% function. Not always best (otherwise, we could march directly to
f,g the goal!)
AN /

Laranoyp "x'g

-

e Example: uniform-cost search!

Search using an evaluation function

What is the evaluation function?

- Evaluates cost from tO i ?
e How about the cost to the goal?
h(n) = estimated cost of the cheapest
3 path from the state at node n to a goal state
3
78 h(n) would help focusing search
o R
=
=8
w
=<
=3
£
Cost to the goal
This information is not part of the problem description
Arad 366 M ehadia 241
® Buchar est 0 Neamt 234
Craiova 160 Oradea 380
Dobreta 242 Pitesti 100
Eforie 161 Rimnicu Vilcea 193
Fagar as 176 Sibiu 253
Giurgiu 77 Timisoara 329
Hirsova 151 Urziceni 80
5 las 226 Vadui 199
o g Lugoj 244 Zerind 374
o g
72
B
< wm
=8

Laranoyp "x'g

4 A

Best-first search

1. Greedy search chooses the node n closest to the goal

such as h(n) is minimal

©
2. A* search chooses the least-cost solution
g(n): cost from root to a given node n
solution cost f(n) ¢ +
5 h(n): cost from the node n to the goal node
53 such as f(n) = g(n) + h(n) is minimal
ES
)
Q %)
=2
S \\ /
&~
w
=<
(- A
g
g
“ | Greedy search
— First expand the node whose state is ‘closest’ to the goal!
— Minimize h(n)
function BESFFIRST-SEARCH(problem, EVAL -FN) returns a solution sequence
inputs: problem, a problem
Eval-Fn, an evaluation function
5 Queueing-Fn+ a function that orders nodes byAt -FN
return GENERAL-SEARCH(problem, Queueing-Fn)
— Usually, cost of reaching a goal may be estimated,
not determined exactly
3 .
i — If state at n is goal, h(n)= ?
T a
:2 | — How to choose h(n)? Problem specific! Heuristic!
P
S \\ J
&~

Laranoyp "x'g

-

Greedy search: Romania

hsip(n) = straight-line distance between n and goal location

— 75,
= Arad [
118
Arad 366 Mehadia 241
Bucharest 0 Neamt 234
Craiova 160 Oradea 380
Dobreta 242 Pitesti 1Q0
Eforie 161 Rimnicu Vilcea 193
- = Hirsova Fagaras 176 Sibiu 283
Giurgiu 77 Timisoara 329
g » Hirsova 151 Urziceni g0
& Dobreta [] lasi 226 Vadlui 199
5 Eforie Lugoj 244 Zerind 3714
c
T a
o
£ 0
o R
3
=]
2t
]
N @
L Y.
[REN
w
= / \
Q
5
5 Greedy search: Trip from Arad to Bucharest
s
(a) Theinitial state
366
(b) After expanding Arad
253 329 374
—_
[\
)
&
T~
5
o
£ 0
Y
Q)
o g ... Greedy search! quick, but not optimal!
ff‘ et
. o
S
&~

900g ‘GT Lreniqayg

Laranoyp "x'g

el

L# €930U £,104DNI3SU]

-

Greedy search: Problems

. False starts: Neamt is a dead-end
From Iasi to Fagaras?

Looping

Arad 366 Mehadia
Bucharest 0 Neamt
Craiova 160 Oradea
Dobreta 242 Pitesti
Eforie 161 Rimnicu Vilcea
W Hirsova Fagaras 176 Sibiu

Giurgiu 77 Timisoara
Hirsova 151 Urziceni
lasi 226 Vaslui

[Giurgiu Eforie LUng 244 Zerind

POOOWWOORMR

900g ‘GT Lreniqayg

Laanoyp x'g

!

L# £930U £,1040NI3SU]

Greedy search: Properties

— Like depth-first, tends to follow a single path to the goal

Not let
. Like depth-first { = O TPIEE

Not optimal
— Time complexity: O(b™), m maximum depth
— Space complexity: O(b") retains all nodes in memory

— Good h function (considerably) reduces space and time

but h functions are problem dependent :—(

N

Laranoyp "x'g

4 h

Hmm...

Greedy search minimizes estimated cost to goal h(n)
— cuts search cost considerably

— but not optimal, not complete

— | Uniform-cost search minimizes cost of the path so far g(n)
— is optimal and complete
— but can be wasteful of resources
New-Best-First search minimizes f(n) = g(n) + h(n)
= — combines greedy and uniform-cost searches
53 f(n) = estimated cost of cheapest solution via n
g g — Provably: complete and optimal, if h(n) is admissible
"
NG J
w
<
¢ | A* Search
e A* search
Best-first search expanding the node in the fringe with minimal
f(n) = g(n) + h(n)
I~ e A* search with admissible h(n)
Provably complete, optimal, and optimally efficient using
TREE-SEARCH
e A* search with consistent h(n)
= Remains optimal even using GRAPH-SEARCH
%g (See TREE-SEARCH page 72 and GRAPH-SEARCH page 83)
B\ /

1C

ble heurist

issi

Adm

-

An admissible heuristic is a heuristic that never overestimates the

cost, to reach the goal

— 18 optimistic

— thinks the cost of solving is less than it actually is

wn
(R -
) ™
:gg
g = S
)
2 M
T g 2o
[¢b] n
)
2 @ =
=2 7
e S8
CG.J::%
s 2 «
n g
L& g
o o ©
~ e Eg:
——
)
—
3
I
¥
=

)

ble,

1SS1

f(n) never overestimates the actual cost of

the best solution through n.

If h is adm

/

B.Y. Choueiry

—_
-3

Instructor’s notes #7

February 15, 2006

/P;* Search From Arad to Bucharest

(a) Theinitial state >
366=0+366
(b) After expanding Arad Carad >
>CSibiu D Timisoard
393=140+253 447=118+329

(c) After expanding Sibiu

447=118+329

646=280+366415-239+176 671=291+380413=220+193

(d) After expanding Rimnicu Vilcea

TR

447=118+329
646=280+366 415=239+176 671=291+380
526=366+160417=317+100 553=300+253

(e) After expanding Fagaras

T

447=118+329
646=280+366

591=338+253 450=450+0 526=366+160417=317+100553=300+253

(f) After expanding Pitesti

\\\\\\\\» 418=418+0 615=455+160 607=414+193

~

Czerind>

449=75+374

449=75+374

449=75+374

449=75+374

449=75+374

/

B.Y. Choueiry 18

Instructor’s notes #7

February 15, 2006

Laranoyp "x'g

A* Search is optimal \

G, G2 goal states = ¢g(G) = f(G), f(G2) = g(G2) h(G) = h(Gg) = 0
G optimal goal state = C* = f(G)
G2 suboptimal = f(G2) > C* = f(G) (1)

Suppose n is not chosen for expansion

© N
Ne}
15} 'ﬁ%
h admissible = C* > f(n) (2)
gj;' Since n was not chosen for expansion = f(n) > f(Gs) (3)
| @@ =026 (4)
;5 (1) and (4) are contradictory = n should be chosen for expansion
w
< / \
¢ (Which nodes does A* expand?
£ | GOAL-TEST is applied to STATE(node) when a node is
chosen from the fringe for expansion, not when the node is
generated
Theorem 3 & 4 in Pearl 84, original results by Nilsson
e Necessary condition: Any node expanded by A* cannot have an
- f value exceeding C*: For all nodes expanded, f(n) < C*
S
e Sufficient condition: Every node in the fringe for f(n) < C*
will eventually be expanded by A*
_ In summary
53 e A* expands all nodes with f(n) < C*
: . e A* expands some nodes with f(n) = C*
Jgi \\o A* expands no nodes with f(n) > C* /

Laranoyp "x'g

/Expanding contours

A* expands nodes from fringe in increasing f value

We can conceptually draw contours in the search space

[\)
—_
3
o
&
5 The first solution found is necessarily the optimal solution
58 . . .
ne \iareful: a TEST-GOAL is applied at node expansion /
S
w
<
) A* Search is complete
Since A* search expands all nodes with f(n) < C*, it must
eventually reach the goal state unless there are infinitely many
1. 4 a node with infinite branching factor
2 | nodes f(n) < C*¢ or
2. d a path with infinite number of nodes along it
on locally finite graphs
ij A* is complete if { and
o 2
78 36 > 0 constant, the cost of each operator > ¢
AN /

Laranoyp "x'g

(a

Time:

* Search Complexity

Exponential in (relative error in h x length of solution path)

... quite bad

Space: must keep all nodes in memory

Y Number of nodes within goal contour is exponential in length
of solution.... unless the error in the heuristic function
|h(n) — h*(n)| grows no faster than the log of the actual path
cost: |h(n) —h*(n)| < O(logh*(n))
_ In practice, the error is proportional... impractical..
o)
5; major drawback of A*: runs out of space quickly
E?? — Memory Bounded Search IDA*(not addressed here)
2\ /
w
<
A* Search is optimally efficient
.. for any given evaluation function: no other algorithms that finds
b the optimal solution is guaranteed to expend fewer nodes than A*
Interpretation (proof not presented): Any algorithm that does not
expand all nodes between root and the goal contour risks missing
. the optimal solution
=g
o
2\ /

Laranoyp "x'g

-

Tree-Search vs. Graph-Search

After choosing a node from the fringe and before expanding it,
GRAPH-SEARCH checks whether STATE(node) was visited before to

avoid loops.

— GRAPH-SEARCH may lose optimal solution

~

[\)
(S
Solutions
1. In Graph-Search, discard the more expensive path to a node
3 2. Ensure that the optimal path to any repeated state is the first
ol
% : one found
5 — Consistency
=8
AN /
w
< / \
é‘) Consistency
g h(n) is consistent
If Vn and V n/ successor of n along a path, we have
h(n) < k(n,n’)+ h(n'), k cost of cheapest path from n to n’
Monotonicity
% | h(n) is monotone
If V n and V n/ successor of n generated by action a, we have
h(n) < c¢(n,a,n’) + h(n'), n’ is an immediate successor of n
Triangle inequality ((n,n’, goal))
3
5; Important: h is consistent < h is monotone
5 : Beware: of confusing terminology ‘consistent’ and ‘monotone’
zco? \\ Values of h not necessarily decreasing/nonincreasing /
S

Laranoyp "x'g

4 h

Properties of h: Important results

900g ‘GT Lreniqayg

L# £930U £,1040NI3SU]

e h consistent < h monotone (Pearl 84)
e h consistent = h admissible (AIMA, Exercise 4.7)
[\)
= consistency is stricter than admissibility
e h consistent = f is nondecreasing
f(n') =g(n)+h(n') = g(n)+c(n,a,n')+h(n') = g(n)+h(n) = f(n)
5
=g
o
;< e h consistent = A* using GRAPH-SEARCH is optimally efficient
AN /
w
<
é. Pathmax equation You may ignore this slide
Monotonicity of f: values along a path are nondecreasing
When f is not monotonic, use pathmax equation
f(n) = maz(f(n),g(n') + h(n'))
A* never decreases along any path out from root
o3
g(n) =3
hn=4 O n
A s

Pathmax
e guarantees f nondecreasing

e does not guarantee h consistent

e does not guarantee A* + GRAPH-SEARCH is optimally efficient

Laranoyp "x'g

-

Summarizing definitions for A*

e A* is a best-first search that expands the node in the fringe
with minimal f(n) = g(n) + h(n)

e An admissible function h never overestimates the distance to

~

the goal.
[\V)
© e h admissible = A* is complete, optimal, optimally efficient
using TREE-SEARCH
e h consistent < h monotone
h consistent = h admissible
nji h consistent = f nondecreasing
o
B S e h consistent = A* remains optimal using GRAPH-SEARCH
=8
O\ /
w
<
¢ | Admissible heuristic functions
Examples
e Route-finding problems: straight-line distance
hi(n) = number of misplaced tiles
e 8-puzzle:
h2(n) = total Manhattan distance
w
S
a
a
EH Start State Goal State
22
2 m(s) =7
ir | ho(S) =7
O\ /

Laranoyp "x'g

-

Performance of admissible heuristic functions

= | Two criteria to compare admissible heuristic functions:
1. Effective branching factor: b*
2. Dominance: number of nodes expanded
3
o
&
w
<
5
Effective branching factor b*
— The heuristic expands [N nodes in total
— The solution depth is d
5
— b* is the branching factor had the tree been uniform
b* d+1 1
N=1ap g) oyt =
ng — Example: N=52, d=5 — b* = 1.92
&

Laranoyp "x'g

/Dominance \

If hao(n) > hq(n) for all n (both admissible)
then ho dominates h, and is better for search

Typical search costs: nodes expanded

Sol. depth IDS A*(h1) A*(hs)
d=12 3,644,035 227 73
& d=24 too many 39,135 1,641
A* expands all nodes f(n) < C* = g(n) + h(n) < C*
=h(n) < C* —g(n)
If hy < ho, A* with h; will always expand at least as many (if not
= | more) nodes than A* with hy
o
Zé’ — It is always better to use a heuristic function with
- : higher values, as long as it does not overestimate (remains
o admissible)
w
<
How to generate admissible heuristics?
— Use ezact solution cost of a relaxed (easier) problem
o Steps:
~
— Consider problem P
— Take a problem P’ easier than P
— Find solution to P’
— Use solution of P’ as a heuristic for P
5
=g
o
2\ /

Laranoyp "x'g

/Relaxing the 8-puzzle problem \

A tile can move mode square A to square B if

A is (horizontally or vertically) adjacent to B and B is blank

1. A tile can move from square A to square B if A is adjacent to B
The rules are relaxed so that a tile can move to any adjacent

square: the shortest solution can be used as a heuristic

w
(S
(= ha(n))
2. A tile can move from square A to square B if B is blank
Gaschnig heuristic (Exercice 4.9, AIMA, page 135)
9 3. A tile can move from square A to square B
55 The rules of the 8-puzzle are relaxed so that a tile can move
i anywhere: the shortest solution can be used as a heuristic
=8
3 (= ha(n))
w
<
An admissible heuristic for the TSP
w ..
< | Let path be any structure that connects all cities
—> minimum spanning tree heuristic (polynomial)
(Exercice 4.8, AIMA, page 135)
3
o
o
2\ /

Laranoyp "x'g

-

Combining several admissible heuristic functions

We have a set of admissible heuristics hq, hs, h3, ..., h,, but no
o heuristic that dominates all others, what to do?
\]
— h(n) = max(hi(n),ha(n),..., hyn(n))
h is admissible and dominates all others.
— Problem:
) Cost of computing the heuristic (vs. cost of expanding nodes)
AN /
w
< / \
g Using subproblems to derive an admissible heuristic function
g Goal: get 1, 2, 3, 4 into their correct positions, ignoring the
‘identity’ of the other tiles
aan
anna a
a ann
Start State Goal State
e Cost of optimal solution to subproblem used as a lower bound
(and is substantially more accurate than Manhattan distance)
Pattern databases:
e Identify patterns (which represent several possible states)
) e Store cost of exact solutions of patterns
o
Zé’ e During search, retrieve cost of pattern and use as a (tight)
< estimate
§; \Eost of building the database is amortized over ‘time’ /

Laranoyp "x'g

-

Iterative improvement (ak.a. local search)

— Sometimes, the ‘path’ to the goal is irrelevant

only the state description (or its quality) is needed

Iterative improvement search

w
Ne}
e choose a single current state, sub-optimal
e gradually modify current state
e generally visiting ‘neighbors’
=}
53 e until reaching a near-optimal state
: : Example: complete-state formulation of N-queens
AN /
w
<
Main advantages of local search techniques
1. Memory (usually a constant amount)
N
< 2. Find reasonable solutions in large spaces
where we cannot possibly search the space exhaustively
3. Useful for optimization problems:
. best state given an objective function (quality of the goal)
=}
=g
o
2\ /

Laranoyp "x'g

/Intuition: state-scape landscape \

evaluation

current
state

N
—_
e All states are layed up on the surface of a landscape
e A state’s location determines its neighbors (where it can move)
3 e A state’s elevation represents its quality (value of objective
ol
TE function)
jg e Move from one neighbor of the current state to another state
gi \\ until reaching the highest peak /
w
<
£ | Two major classes
1. Hill climbing (a.k.a. gradient ascent/descent)
— try to make changes to improve quality of current state
2. Simulated Annealing (physics)
— things can temporarily get worse
S
[\
Others: tabu search, local beam search, genetic algorithms, etc.
— Optimality (soundness)? Completeness?
3 — Complexity: space? time?
- : — In practice, surprisingly good.. (eroding myth)
AN /

900g ‘GT Lreniqayg

817 Laranoyp "x'g

L# €930U £,104DNI3SU]

-

Hill climbing

Start from any state at random and loop:
Examine all direct neighbors

If a neighbor has higher value then move to it else exit

evaluation objective function .
_— global maximum

shoulder

/

current
state

local maximum

current
state

Local optima: (maxima or minima) search halts

Problems: Plateau: flat local optimum or shoulder

Ridge

“flat” local maximum

state space

/

9007 ‘GT Areniqsyg
L # 930U §,I109DONIJSUT

Laanoyp x'g

4%

-

Plateaux

Allow sideway moves

objective function .
_— global maximum

shoulder

local maximum
“flat” local maximum

state space

current
state

e For shoulder, good solution

e For flat local optima, may result in an infinite loop

N

Limit number of moves

~

Laranoyp "x'g

4 A

Ridges

Sequence of local optima that is difficult to navigate

N
(S
3
o
o
AN _/
w
<
Variants of Hill Climbing
e Stochastic hill climbing: random walk
Choose to disobey the heuristic, sometimes
. Parameter: How often?
D
e First-choice hill climbing
Choose first best neighbor examined
Good solution when we have too many neighbors
3 e Random-restart hill climbing
5; A series of hill-climbing searches from random initial states
AN _/

Laranoyp "x'g

-

Random-restart hill-climbing

— When HC halts or no progress is made
re-start from a different (randomly chosen) starting

save best results found so far

N

\]

— Repeat random restart
- for a fixed number of iterations, or
- until best results have not been improved for a certain

3 number of iterations
ES
5
< ®
58
AN /

w

< / \

¢ (Simulated annealing (I)

c

g Basic idea: When stuck in a local maximum allow few steps

towards less good neighbors to escape the local maximum
Start from any state at random, start count down and loop
until time is over:
Pick up a neighbor at random
. Set AE = value(neighbor) - value(current state)
o If AE>0 (neighbor is better)
then move to neighbor
else AE<0 move to it with probability < 1

£ o . AE is negative
7a Transition probability ~ e2£/T 8
7 T: count-down time
o = . .
< as time passes, less and less likely to make the move towards
o8 \inattractive’ neighbors /
S

Laranoyp "x'g

-

Simulated annealing (II)

Analogy to physics:

Gradually cooling a liquid until it freezes

If temperature is lowered sufficiently slowly, material

N

© will attain lowest-energy configuration (perfect order)

Count down +«+— Temperature

_ Moves between states «— Thermal noise

=}
53 Global optimum +«+— Lowest-energy configuration
AN /

w

<

How about decision problems?
o Optimization problems Decision problems
S
[terative improvement +«+— Iterative repair
State value «— Number of constraints violated
Sub-optimal state +«— Inconsistent state

. Optimal state «+— Consistent state
=g
o
2\ /

Laranoyp "x'g

4)

Local beam search

e Keeps track of k states

e Mechanism:

900g ‘GT Lreniqayg

L# £930U £,1040NI3SU]

o Begins with k states
At each step, all successors of all k£ states generated
Goal reached? Stop.
Otherwise, selects k best successors, and repeat.
. e Not exactly a k restarts: £ runs are not independent
o
fg, e Stochastic beam search increases diversity
AN /
w
<
¢ | Genetic algorithms
e Basic concept: combines two (parent) states
e Mechanism:
Starts with k£ random states (population)
Encodes individuals in a compact representation (e.g., a string
o in an alphabet)
[\

Combines partial solutions to generate new solutions (next

generation)

900g ‘GT Lreniqayg

/Important components of a genetic algorithm \

Laranoyp "x'g

24 319% .| 82752411 [32748552 |~ 32748[p2
23 20% | 24748552 l|: :| 24752411 || 24752411 |
20 260 | 32752411 32752124 |~ 322b2124 |
11 149 [24415124 [24415811 |~ 24415417]]

@ ® © @ @
Initial Population Fitness Function Selection Crossover Mutation
U‘ . . ’ . . K
w e Fitness function ranks a state’s quality, assigns probability for
selection
e Selection randomly chooses pairs for combinations depending
on fitness
g e Crossover point randomly chosen for each individual, offsprings
a
] are generated
: e Mutation randomly changes a state
L\ -
A

