Laanoyp "x-g

-

Title: Inference in First-Order Logic
AIMA: Chapter 9

Introduction to Artificial Intelligence

—_
CSCE 476-876, Spring 2006
URL: www.cse.unl.edu/ choueiry/S06-476-876
] Berthe Y. Choueiry (Shu-we-ri)
é choueiry@cse.unl.edu, (402)472-5444
Z5
&
w
<
4
Outline
e Reducing first order inference to propositional inference:
Universal Instantiation, Existential Instantiation,
Skolemization, Generalized Modus Ponens
N e Unification
e Inference mechanisms in First-Order Logic:
— Forward chaining
= — Backward chaining
2 — Resolution (and CNF)
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Every instantiation of a universally quantified sentence is entailed
by it:

Universal instantiation (UI)

Yoo

Subst({v/g}, @)

for any variable v and ground term g

E.g., VxKing(x) A Greedy(z) = Ewvil(z) yields:
King(John) A Greedy(John) = Ewvil(John)

King(Richard) A\ Greedy(Richard) = Evil(Richard)
King(Father(John))\Greedy(Father(John)) = Evil(Father(John)

N Y
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Existential instantiation (EI)
For any sentence «, variable v, and constant symbol &

that does not appear elsewhere in the knowledge base:

Jdva

Subst({v/k}, a)

E.g., 3xCrown(z) AN OnHead(x, John) yields
Crown(C1) N OnHead(C4, John)

provided C is a new constant symbol, called a Skolem constant

Another example: from 3xd(z¥)/dy = ¥ we obtain

d(e¥)/dy = €Y

provided e is a new constant symbol

N /
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Ul and EI

UI can be applied several times to add new sentences;

the new KB is logically equivalent to the old

ot
EI can be applied once to replace the existential sentence;
the new KB is not equivalent to the old,
3 but is satisfiable iff the old KB was satisfiable
2
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¢ | Reduction to propositional inference (I)
VeKing(x) A Greedy(z) = FEvil(x)
King(John)
Greedy(John)
Brother(Richard, John)
Instantiating the universal sentence in all possible ways, we have:
< | King(John) A Greedy(John) = Ewvil(John)
King(Richard) N\ Greedy(Richard) = Evil(Richard)
King(John)
Greedy(John)
¥ | Brother(Richard, John)
5%: The new KB is propositionalized: proposition symbols are:
2 King(John), Greedy(John), Evil(John), King(Richard)etc.
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Reduction to propositional inference (II)

e Claim: a ground sentence™ is entailed by new KB iff entailed by

original KB

e Claim: every FOL KB can be propositionalized so as to

\] preserve entailment
e Idea: propositionalize KB and query, apply resolution, return
result
= e Problem: with function symbols, there are infinitely many
: ground terms, e.g., Father(Father(Father(John)))
3
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“ | Reduction to propositional inference (III)
e Theorem: Herbrand (1930). If a sentence « is entailed by an
FOL KB, it is entailed by a finite subset of the propositional
KB
e Idea: For n = 0 to oo do
@ create a propositional KB by instantiating with depth-n
terms
see if « is entailed by this KB
. e Problem: works if « is entailed, loops if « is not entailed
: e Theorem: Turing (1936), Church (1936), entailment in FOL is
Ze semidecidable




Liranoyp "x-g

4 N

Problems with propositionalization

Propositionalization generates lots of irrelevant sentences.

E.g., from
VeKing(x) A Greedy(z) = Evil(x)
o | King(John)
VyGreedy(y)
Brother(Richard, John)
it seems obvious that Ewvil(John), but propositionalization
3 produces lots of facts such as Greedy(Richard) that are irrelevant
}éf With p k-ary predicates and n constants, there are p - n”
g instantiations!
&
=< / \
g Unification
g We can get the inference immediately if we can find a substitution 6
such that King(x) and Greedy(z) match King(John) and
Greedy(y)
0 = {x/John,y/John} works
Unify(a, 5) = 0 if af = 36
Knows(John,x) | Knows(John, Jane) | {x/Jane}
Knows(John,x) | Knows(y,OJ) {z/OJ,y/John}
. Knows(John,x) | Knows(y, Mother(y)) | {y/John,x/Mother(John)}
: Knows(John,x) | Knows(x,0J) fail
>§
@_g Standardizing apart eliminates overlap of variables, e.g.,
zi \i(nows(zn, OJ) /
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Generalized Modus Ponens (GMP)
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! A ApaN...\p, = .
p]. ) p2 9 ) p (p; p2 p Q) Where pzle :pze fOI' all 7
q
p1’ is King(John)  p1 is King(x)
p2’ is Greedy(y) p2 is Greedy(z)
0 is {x/John,y/John}  qis Evil(x)
: q0 is Evil(John)
%)O GMP used with KB of definite clauses (ezactly one positive literal)
E% All variables assumed universally quantified
w
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Example knowledge base

The law says that it is a crime for an American to sell weapons to
hostile nations. The country Nono, an enemy of America, has some
missiles, and all of its missiles were sold to it by Colonel West, who

is American.

Prove that Col. West is a criminal

. 1t is a crime for an American to sell weapons to hostile nations:
American(z) N Weapon(y) A Sells(z,y, z) N Hostile(z) =

Criminal(x)

N /
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Example of KB (2)

Nono ... has some missiles, i.e., 3z Owns(Nono,z) A Missile(x):
Owns(Nono, My) and Missile(My)

—
e . all of its missiles were sold to it by Colonel West
VaxMissile(z) AN Owns(Nono,x) = Sells(West,x, Nono)
. Missiles are weapons:
: Missile(x) = Weapon(x)
&
w
<
Example of KB (3)
An enemy of America counts as “hostile”:
Enemy(x, America) = Hostile(x)
—
=~
West, who is American ...
American(West)
) The country Nono, an enemy of America ...
2 | Enemy(Nono, America)
ZE
&
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Forward chaining algorithm
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<FOL-FC-Ask, Figure 9.3 page 282>
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Forward chaining proof
Criminal(Wes}
—
D
| WeapoiiMy) | [ SellgWest,M,Non9 | Hostile(Nono
3 :
. |Amer|car(Wes)| | Missile(M,) | | OwngNono,M) | | EnemyNono,Americj|
.
g
o
&3
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Properties of forward chaining

Sound and complete for first-order definite clauses

(proof similar to propositional proof)

e Datalog = first-order definite clauses + no functions (e.g.,
. ZaaDs
= crime KB)
FC terminates for Datalog in poly iterations: at most p - n*
literals
B e May not terminate in general if « is not entailed
o)
:E: e This is unavoidable: entailment with definite clauses is
Ze semidecidable
=y
w
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i | Efficiency of forward chaining
e Simple observation: no need to match a rule on iteration k
if a premise wasn’t added on iteration k — 1
= match each rule whose premise contains a newly added
— literal
o
e Matching itself can be expensive
e Database indexing allows O(1) retrieval of known facts
l e.g., query Missile(x) retrieves Missile( M)
5
é’ e Matching conjunctive premises against known facts is NP-hard
g . e Forward chaining is widely used in deductive databases
=y
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Backward chaining algorithm

—
Ne
<FOL-BC-Ask, Figure 9.6 page 288>
£é
w
=
Backward chaining example
| CriminaI(Wes)|
DN
S
| AmericarfWes)| | Weapoty) | | SellgWest,M.2) | Hostile(Nong
{1} {zZINong
§' | Missilgy) || Missile(M4) | |Owns{Nono,Ml)| |Enemy(Nono,Americ§a
%>§: {yiM1} {} {} {}
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Properties of backward chaining

e Depth-first recursive proof search: space is linear in size of
proof
= e Incomplete due to infinite loops
= fix by checking current goal against every goal on stack
e Inefficient due to repeated subgoals (both success and failure)
= fix using caching of previous results (extra space!)
5
: e Widely used (without improvements!) for logic programming
&
w
<
5 | Resolution: brief summary
Full first-order version:
V-V, my V-V m,
LV VLV VeV Vmy Ve Vo Vg Ve Vomy,)6
2 | where Unify(l;, »m;) = 6.
For example,
—Rich(z) vV Unhappy(z) Rich(Ken)
Unhappy(Ken)
5
: | with o = {x/Ken}
) _
"J_g Apply resolution steps to CNF (K B A —«); complete for FOL
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Conversion to CNF (I)

Everyone who loves all animals is loved by someone:
Vx[VyAnimal(y) = Loves(x,y)| = [3yLoves(y, x)]

1. Eliminate biconditionals and implications
Va[-Vy—-Animal(y) V Loves(z,y)] V [JyLoves(y, x)]

2. Move - inwards: =Vx,p = dz—p, —-dz,p=Vr—p:
Va[Iy—(—Animal(y) V Loves(z,y))] V [ByLoves(y, x))

Va[dy——Animal(y) A —=Loves(z,y)| V [JyLoves(y, )]
Va[JyAnimal(y) A = Loves(z,y)] V [JyLoves(y, x)]

N _/
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/Conversion to CNF (1) \

3. Standardize variables: each quantifier should use a different one
Va[JyAnimal(y) A = Loves(z,y)] V [3zLoves(z, )]

4. Skolemize: a more general form of existential instantiation.

Each existential variable is replaced by a Skolem function

of the enclosing universally quantified variables:
Vx[Animal(F(x)) A =Loves(x, F(x))] V Loves(G(x), )
5. Drop universal quantifiers:
[Animal(F (x)) A ~Loves(x, F(z))] V Loves(G(x), x)

6. Distribute A over V:

[Animal(F (x))V Loves(G(z), x)|\[-Loves(x, F(z))V Loves(G(x), x)]

N /
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Resolution proof: definite clauses

l =American(x)0 -Weapon(y)J -Sells(x,y,z)] -Hostile(z) O Criminal(x) l ﬂCriminaI(West)‘

l American(West l -American(West)]-Weapon(y)J -Sells(West,y,Z)l ﬂHostiIe(z)‘

l =Missile(x) 0 Weapon(x)| l -Weapon(y)d -Sells(West,y,Z)) —\Hostile(z)‘

[ Missile(My) | [ -Missile(y) 0-=Sells(Westy, 2 -Hostile(z)|

l =Missile(x) O -=Owns(Nono,x)] Sells(West,x,NonN—.SeIIS(West,M,z) O -Hostile(z) ‘

| Missile(M,) | -Missile(M,) 0-Owns(Nono,M) O -Hostile(Nono)‘

l Owns(Nono,M) Nl—‘Owns(Nono,M) O-Hostile(Nono) ‘

l -Enemy(x,America)] Hostile(x) \l—'Hostile(Nono) ‘

l Enemy(Nono,America)ﬁilinemy(Nono,America}




