Laanoyp “x'g

-

Title: Solving Problems by Searching
AIMA: Chapter 3 (Sections 3.4, 3.5, and 3.6)

Introduction to Artificial Intelligence

p—t
CSCE 476-876, Spring 2006
URL: www.cse.unl.edu/ choueiry/S06-476-876
= Berthe Y. Choueiry (Shu-we-ri)
;sg choueiry@cse.unl.edu, (402)472-5444
T o
8
S
<z
oS
w
=<
5
5
g
function GENERAL-SEARCH(problem, strategy) returnsasolution, or failure
initialize the search tree using the initial state of problem
loop do
if there are no candidatesfor expansionthen return failure
choose aleaf nodefor expansion according to strategy
if the node contains agoal state then return the corresponding solution
b €lse expand the node and add the resulting nodesto the search tree
end
Essence of search: which node to expand first?
— search strategy
5
;?; A strategy is defined by picking the order of node expansion
T o
8
S
<z
oS

Laranoyp "x'g

~

Uninformed: use only information available in problem definition

Types of Search

Heuristic: exploits some knowledge of the domain

Uninformed search strategies

w 1. Breadth-first search
2. Uniform-cost search
3. Depth-first search
3 4. Depth-limited search
:3; 5. Tterative deepening depth-first search
‘35 6. Bidirectional search
AN /
5 R
2
- | Search strategies
) Criteria for evaluating search:
1. Completeness: does it always find a solution if one exists?
2. Time complexity: number of nodes generated /expanded
3. Space complexity: maximum number of nodes in memory
= 4. Optimality: does it always find a least-cost solution?
Time/space complexity measured in terms of:
. e h: maximum branching factor of the search tree
§§ e d: depth of the least-cost solution
é; e m: maximum depth of the search space (may be o)
AN /

Laranoyp "x'g

4 h

Breadth-first search (I)

— Expand root node
— Expand all children of root
— Expand each child of root

— Expand successors of each child of root, etc.

‘ -/\

ot

_ — Expands nodes at depth d before nodes at depth d + 1
1;’ — Systematically considers all paths length 1, then length 2, etc.
:% — Implement: put successors at end of queue.. FIFO
AN /

w

<

Breadth-first search (2)
o >®
D>E) © PO
© ©® PO ® ® ©

AN /

900¢g ‘9 Lrenaqeyg

Laranoyp "x'g

Q#£ 930U £ ,103D5NIJSUT

/Breadth-ﬁrst search (3)

—— One solution?

— Many solutions? Finds shallowest goal first
1. Complete? Yes, if b is finite

not in general
3. Time? 1 +b+0b24+b%+... + b+ b(b% — 1) = O(b¥+1)

branching factor b

O(bd+1)
depth d

4. Space? same, O(b?*1), keeps every node in memory, big

problem

2. Optimal? provided cost increases monotonically with depth,

\\ can easily generate nodes at 10MB /sec so 24hrs = 860GB /

900¢g ‘9 Lrenaqeyg

Laanoyp x'g

Q#£ 930U £ ,103D5NIJSUT

‘v

— Breadth-first does not consider path cost g(z)

niform-cost search (I)

—— Uniform-cost expands first lowest-cost node on the fringe

— Implement: sort queue in decreasing cost order

When g(z) = Depth(z) — Breadth-first = Uniform-cost

S@

S
A./BI\C.

0

~

Laranoyp "x'g

-

Uniform-cost search (2)

1. Complete?
Yes, if cost > ¢

2. Optimal?
If the cost is a monotonically increasing function
© When cost is added up along path, an operator’s cost ?
3. Time?
of nodes with ¢ < cost of optimal solution, O(bfo*/d)
where C™ is the cost of the optimal solution
5
gﬁ; 4. Space?
7 # of nodes with ¢ < cost of optimal solution, O(b/¢ /1)
£
AN /
w
< / \
¢ [Depth-first search (I)
2 — Expands nodes at deepest level in tree
— When dead-end, goes back to shallower levels
— Implement: put successors at front of queue.. LIFO
A
= /<\ /<<\
o
&
&R, .
5 g — Little memory: path and unexpanded nodes
2g \Er b: branching factor, m: maximum depth, space ? /
S

Laranoyp "x'g

/Depth-ﬁrst search (2)
@

L
A

©

— >
AN /
w
< / \
¢ [Depth-first search (3)
z Time complexity:
We may need to expand all paths, O(b™)
When there are many solutions, DFS may be quicker than BFS
When m is big, much larger than d, co (deep, loops), .. troubles
— Major drawback of DFS: going deep where there is no solution..
—
™| Properties:
1. Complete? No in infinite-spaces, complete in finite spaces
2. Optimal?
3 3. Time? O(b™) Woow..
5; terrible if m is much larger than d, but if solutions are dense,
S5 may be much faster than breadth-first
Z§ \\4 Space? O(bm), linear! Woow.. J
S

Laranoyp "x'g

Depth-limited search (1)

than 19 is cycling. Don’t expand deeper!

— DFS is going too deep, put a threshold on depth!

For instance, 20 cities on map for Romania, any node deeper

— Implement: nodes at depth [have no successor

~

& Properties:
1. Complete?
2. Optimal?
3 3. Time? (given [depth limit)
§§, 4. Space? (given [depth limit)
&R,
f,,i Problem: how to choose [7
w
< / \
¢ [Iterative-deepening search (I)
2 | = DLS with depth = 0
— DLS with depth = 1
— DLS with depth = 2
— DLS with depth = 3...
Limit=0 @
Limit=1 @
_ A
Limit=3 @
g /\
T2
5
iz
gi \\—> Combines benefits of DFS and BFS /

Laranoyp "x'g

Cn

erative-deepening search (2)
Limit=0 *® L d

Limit=1 *®

Limit =2 *®

>

- St SN SN
Limit=3 *® >./.\. K‘\. (ﬁ\@
w
=<
% | Iterative-deepening search (3)
—— combines benefits of DFS and BFS
Properties:
S| 1. Time? (d+1).6° + (d).b+ (d — 1).62 + ... + L.b% = O(b?)
2. Space? O(bd), like DFS
3. Complete? like BFS
3 4. Optimal? like BFS (if step cost = 1)

Laranoyp "x'g

-

Iterative-deepening search (4)

— Some nodes are expanded several times, wasteful?
N(BFS) = b+b% + b3 + ...+ b? + (b1 — q)
N(IDS) = (d)b+ (d — 1)b* + ... + (1)b?

—_
\]
Numerical comparison for b = 10 and d = 5:
N(IDS) = 50 + 400 + 3,000 + 20,000 + 100,000 = 123,450
N(BFS) = 10 + 100 + 1,000 + 10,000 + 100,000 + 999,990 =
= | 1,111,100
§§ — IDS is preferred when search space is large and depth unknown
AN /
w
=<
¢ | Bidirectional search (I)
— Given initial state and the goal state, start search from both
ends and meet in the middle
2 Qerl SN
3 — Assume same b branching factor, 3 solution at depth d, time:
25| o@20?) = o(hi/?)
b=10,d = 6, DFS= 1,111,111 nodes, BDS=2,222 nodes!
AN /

Laranoyp "x'g

-

Bidirectional search (2)

In practice —(

If operator are invertible, no problem

e What if 3 many goals (set state)?

e Need to define predecessor operators to search backwards

—_
© do as for multiple-state search
e need to check the 2 fringes to see how they match
need to check whether any node in one space appears in the
other space (use hashing)
B need to keep all nodes in a half in memory O(b%/?)
i
gc’ e What kind of search in each half space?
<z
AN /
w
<
| Summary
Criterion Breadth- Uniform- Depth- Depth- Tterative
First Cost First Limited Deepening
Complete? Yes™ Yes™ No Yes, if l > d Yes
wo | | Time pit! ple/el b b b?
Space pit! p[C™ /el bm bl bd
Optimal? Yes™ Yes™ No No Yes
b branching factor
: d solution depth
5; m maximum depth of tree
&R, . .
g g [depth limit
AN /

Laranoyp "x'g

-

Loops: Avoid repeated states (I)
Avoid expanding states that have already been visited
Valid for both infinite and finite trees

m maximum depth

Example: m + 1 states
DN .
= 2™ possible branches (paths)
A
B
3 C
‘.
i\ /
w
< / \
¢ (Loops: (2)
c
<)) Open list: Fringe
Keep nodes in two lists:
Closed list: Leaf and expansed nodes
Discard a current node that matches a node in the closed list
Tree-Search — Graph-Search
A
B
N
[\ c
D
Issues:
1. Implementation: hash table, access is constant time
E, Trade-off cost of storing+checking vs. cost of searching
5t
g% 2. Losing optimality
< ; when new path is cheaper/shorter of the one stored
§i \\3 BFS and IDS now require exponential storage /

Laranoyp "x'g

Summary
Path: sequence of actions leading from one state to another

Partial solution: a path from an initial state to another state

Search: develop a sets of partial solutions

e Search tree & its components (node, root, leaves, fringe)

~

e e Data structure for a search node
e Search space vs. state space
e Node expansion, queue order
3 e Search types: uninformed vs. heuristic
§§ e 6 uninformed search strategies
&R,
f,,; e 4 criteria for evaluating & comparing search strategies
w
<
¢ | Searching with partial information (1)
So far, we assumed:
e Environment fully observable
e Environment deterministic
[\)
W e Agent knows effects of actions
Thus, agent
e always knows where it is
) e can compute state where it will be after a sequence of actions
7 What happens when knowledge about states and actions is
g g incomplete?
AN /

900¢g ‘9 Lrenaqeyg

GT Laranoyp "x'g

Q#£ 930U £ ,103D5NIJSUT

4 h

Searching with partial information (2)

Incompleteness yields 3 types of problems:
e Sensorless (conformant) problems
e Contingency problems

e Exploration problems

N /

900¢ ‘9 Lrenaqeyg

Laanoyp x'g

9¢

Q#£ 930U £ ,103D5NIJSUT

4 A

Sensorless problems (conformant)

e Environment not observable, no percepts

e Agent does not know in which exact state it is
— agent may be in one of more possible initial states

— an action may lead to one or more possible successor states

N /

Laranoyp "x'g

4 h

Contingency problems

e environment partially observable or actions are uncertain

[\)
- e agent’s percepts provide new input after each action, a
contingency to plan for
e Adverserial problems: uncertainty caused by action of other
_ agents
=}
4
5 o
iz
AN /
w
<
4 A
g
Exploration problems
& e States and actions of the environment are unknown
e Agent must act to discover them
e Extreme case of contingency problem
3
&
5 o
iz
AN /

900¢g ‘9 Lrenaqeyg

Laranoyp "x'g

6C

Q#£ 930U £ ,103D5NIJSUT

4 h

Sensorless problems (1)
Vacuum cleaner: no sensors, but agent knows effects of actions

Agent may be in any state {1, 2, 3, 4,5, 6, 7, 8}
e [Right] always ends in {2, 4, 6, 8}
e [Right,Suck] always ends in {4, 8}

e [Right, Suck, Le ft, Suck] always works, coerces the world into 7

N /

900¢ ‘9 Lrenaqeyg

Laanoyp x'g

0¢

Q#£ 930U £ ,103D5NIJSUT

~

Sensorless problems (2)

Environment not (fully) observable:
e Agent must think about sets of states,
e Agent has a belief state (set of possible states)

Environment fully observable: 1 belief state has 1 state

Solving sensorless problems: search in space of beliefs
e initial state is a belief state (all possible states)
e actions map 1 belief state into another

e belief state is union of applying action to each state in initial
belief state

e goal is reached when all states in belief state are goal states

N /

900¢g ‘9 Lrenaqeyg

I¢ Laranoyp "x'g

Q#£ 930U £ ,103D5NIJSUT

/Sensorless problems (2)

vacuum cleaner: 12 belief states
L

N ;]|

FLE - FIFHE LA (F L
=N (14
]| s FLIF——[FLA s |
=l R
Rl L SE
(| s — L = s |F]
e L— =]

In general:
8 states, 2° possible belief states
\\ S states, 2° possible belief states

900¢ ‘9 Lrenaqeyg

A4S Laanoyp x'g

Q#£ 930U £ ,103D5NIJSUT

-

Sensorless problems (3)

So far assumed deterministic environment

Approach /results hold for nondeterministic environment

Example: Murphy’s law, Suck sometimes deposits dirt on carpet

but only if there is no dirt there already

e [Suck| applied to State 4 leads to {2, 4}
e [Suck| applied to {1, 2, 3,4, 5,6, 7, 8} leads to ...

e Problem is unsolvable (Exercise 3.18)!!
Agent cannot tell whether state is dirty and cannot predict

whether Suck is going to make it dirty or clean

N

/

Laranoyp "x'g

-

Contingency problems (1)
Environment partially observable or actions are uncertain

When agent can get some information:

& e about environment
e from sensors
e after acting
Eé: Solution to a contingency problem is not a path, but a tree
é - — branches are selected depending on percepts
i\ %
w
e N
¢ (Contingency problems (2)
& Example: vacuum cleaner
e has ‘local dirt’ sensor, no ‘remote dirt’ sensor
e has location sensor
e Murphy’s law
Now,
NS
e Agent perceives L, Dirtyl, thinks in state {1, 3}
e Action [Suck] leads to {5, 7}
e Action [Suck, Right| leads to {6, 8}
3 e Action [Suck, Right, Suck] leads to {8, 6}
5] Plan can succeed (8), or fail (6)
3 3 Thus, action [Suck, Right,if[R, Dirty|thenSuck] leads to {8, 6}
gi \3)111’51011 is a tree /

Laranoyp "x'g

-

Contingency problems (3)

Example: vacuum cleaner

e has ‘local dirt’ sensor and ‘remote dirt’ sensor

w
ot e has location sensor (fully observable)
e Murphy’s law
. Solution is a sequence of actions
Eéf Agent can proceed...
&R,
w
<
(
¢ | Contingency problems (4)
In general, agent
e acts before having a guaranteed plan (solution is a tree)
e needs to consider every possibility that might arise
& — may be an overkill
It is (sometimes) necessary to start acting,
and deal with contingencies as they arise
5
o e — Interleave Search and Execution
T4
5 e — Useful for game playing and exploration problems
< om

