
'&

$%

Title: Solving Problems by Sear
hingAIMA: Chapter 3 (Se
tions 3.4, 3.5, and 3.6)
Introdu
tion to Arti�
ial Intelligen
eCSCE 476-876, Spring 2006URL: www.
se.unl.edu/�
houeiry/S06-476-876Berthe Y. Choueiry (Shu-we-ri)
houeiry�
se.unl.edu, (402)472-5444

B.Y.Choueiry
1
Instru
tor'snotes#6
February6,2006

'&

$%
function GENERAL-SEARCH( problem, strategy) returns a solution, or failure

initialize the search tree using the initial state of problem
loop do

if there are no candidates for expansion then return failure
choose a leaf node for expansion according to strategy
if the node contains a goal state then return the corresponding solution
else expand the node and add the resulting nodes to the search tree

endEssen
e of sear
h: whi
h node to expand �rst?

−→ sear
h strategyA strategy is de�ned by pi
king the order of node expansion

B.Y.Choueiry
2
Instru
tor'snotes#6
February6,2006



'&

$%

Types of Sear
hUninformed: use only information available in problem de�nitionHeuristi
: exploits some knowledge of the domainUninformed sear
h strategies1. Breadth-�rst sear
h2. Uniform-
ost sear
h3. Depth-�rst sear
h4. Depth-limited sear
h5. Iterative deepening depth-�rst sear
h6. Bidire
tional sear
h

B.Y.Choueiry
3
Instru
tor'snotes#6
February6,2006

'&

$%

Sear
h strategiesCriteria for evaluating sear
h:1. Completeness: does it always �nd a solution if one exists?2. Time 
omplexity: number of nodes generated/expanded3. Spa
e 
omplexity: maximum number of nodes in memory4. Optimality: does it always �nd a least-
ost solution?Time/spa
e 
omplexity measured in terms of:

• b: maximum bran
hing fa
tor of the sear
h tree

• d: depth of the least-
ost solution

• m: maximum depth of the sear
h spa
e (may be ∞)

B.Y.Choueiry
4
Instru
tor'snotes#6
February6,2006



'&

$%

Breadth-�rst sear
h (I)

→ Expand root node

→ Expand all 
hildren of root

→ Expand ea
h 
hild of root

→ Expand su

essors of ea
h 
hild of root, et
.

−→ Expands nodes at depth d before nodes at depth d + 1

−→ Systemati
ally 
onsiders all paths length 1, then length 2, et
.

−→ Implement: put su

essors at end of queue.. FIFO

B.Y.Choueiry
5
Instru
tor'snotes#6
February6,2006

'&

$%

Breadth-�rst sear
h (2)

A

B C

E F GD

A

B

D E F G

C

A

C

D E F G

BB C

D E F G

A

B.Y.Choueiry
6
Instru
tor'snotes#6
February6,2006



'&

$%

Breadth-�rst sear
h (3)

−→ One solution?

−→ Many solutions? Finds shallowest goal �rst1. Complete? Yes, if b is �nite2. Optimal? provided 
ost in
reases monotoni
ally with depth,not in general3. Time? 1 + b + b2 + b3 + . . . + bd + b(bd − 1) = O(bd+1)

O(bd+1)







bran
hing fa
tor bdepth d4. Spa
e? same, O(bd+1), keeps every node in memory, bigproblem
an easily generate nodes at 10MB/se
 so 24hrs = 860GB

B.Y.Choueiry
7
Instru
tor'snotes#6
February6,2006

'&

$%

Uniform-
ost sear
h (I)

−→ Breadth-�rst does not 
onsider path 
ost g(x)

−→ Uniform-
ost expands �rst lowest-
ost node on the fringe

−→ Implement: sort queue in de
reasing 
ost orderWhen g(x) = Depth(x) −→ Breadth-�rst ≡ Uniform-
ost

(a) (b)

S

0 S

A B C
1 5 15

5 15

S

A B C

G
11 S

A B C
15

G
11

G
10

S G

A

B

C

1 10

55

15 5

B.Y.Choueiry
8
Instru
tor'snotes#6
February6,2006



'&

$%

Uniform-
ost sear
h (2)1. Complete?Yes, if 
ost ≥ ǫ2. Optimal?If the 
ost is a monotoni
ally in
reasing fun
tionWhen 
ost is added up along path, an operator's 
ost .......?3. Time?# of nodes with g ≤ 
ost of optimal solution, O(b⌈C
∗/ǫ⌉)where C∗ is the 
ost of the optimal solution4. Spa
e?# of nodes with g ≤ 
ost of optimal solution, O(b⌈C
∗/ǫ⌉)

B.Y.Choueiry
9
Instru
tor'snotes#6
February6,2006

'&

$%

Depth-�rst sear
h (I)

−→ Expands nodes at deepest level in tree

−→ When dead-end, goes ba
k to shallower levels

−→ Implement: put su

essors at front of queue.. LIFO

−→ Little memory: path and unexpanded nodesFor b: bran
hing fa
tor, m: maximum depth, spa
e .........?

B.Y.Choueiry
10
Instru
tor'snotes#6
February6,2006



'&

$%

Depth-�rst sear
h (2)

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

B.Y.Choueiry
11
Instru
tor'snotes#6
February6,2006

'&

$%

Depth-�rst sear
h (3)Time 
omplexity:We may need to expand all paths, O(bm)When there are many solutions, DFS may be qui
ker than BFSWhen m is big, mu
h larger than d, ∞ (deep, loops), .. troubles

−→ Major drawba
k of DFS: going deep where there is no solution..Properties:1. Complete? No in in�nite-spa
es, 
omplete in �nite spa
es2. Optimal?3. Time? O(bm) Woow..terrible if m is mu
h larger than d, but if solutions are dense,may be mu
h faster than breadth-�rst4. Spa
e? O(bm), linear! Woow..

B.Y.Choueiry
12
Instru
tor'snotes#6
February6,2006



'&

$%

Depth-limited sear
h (I)

−→ DFS is going too deep, put a threshold on depth!For instan
e, 20 
ities on map for Romania, any node deeperthan 19 is 
y
ling. Don't expand deeper!

−→ Implement: nodes at depth l have no su

essorProperties:1. Complete?2. Optimal?3. Time? (given l depth limit)4. Spa
e? (given l depth limit)Problem: how to 
hoose l?

B.Y.Choueiry
13
Instru
tor'snotes#6
February6,2006

'&

$%

Iterative-deepening sear
h (I)

→ DLS with depth = 0

→ DLS with depth = 1

→ DLS with depth = 2

→ DLS with depth = 3...

Limit = 3

Limit = 2

Limit = 1

Limit = 0

 .....

−→ Combines bene�ts of DFS and BFS

B.Y.Choueiry
14
Instru
tor'snotes#6
February6,2006



'&

$%

Iterative-deepening sear
h (2)

Limit = 3

Limit = 2

Limit = 1

Limit = 0 A A

A

B C

A

B C

A

B C

A

B C

A

B C

D E F G

A

B C

D E F G

A

B C

D E F G

A

B C

D E F G

A

B C

D E F G

A

B C

D E F G

A

B C

D E F G

A

B C

D E F G

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H J K L M N OI

A

B C

D E F G

H I J K L M N O

B.Y.Choueiry
15
Instru
tor'snotes#6
February6,2006

'&

$%

Iterative-deepening sear
h (3)

−→ 
ombines bene�ts of DFS and BFSProperties:1. Time? (d + 1).b0 + (d).b + (d − 1).b2 + . . . + 1.bd = O(bd)2. Spa
e? O(bd), like DFS3. Complete? like BFS4. Optimal? like BFS (if step 
ost = 1)

B.Y.Choueiry
16
Instru
tor'snotes#6
February6,2006



'&

$%

Iterative-deepening sear
h (4)

−→ Some nodes are expanded several times, wasteful?N(BFS) = b + b2 + b3 + . . . + bd + (bd+1 − d)N(IDS) = (d)b + (d − 1)b2 + . . . + (1)bdNumeri
al 
omparison for b = 10 and d = 5:N(IDS) = 50 + 400 + 3,000 + 20,000 + 100,000 = 123,450N(BFS) = 10 + 100 + 1,000 + 10,000 + 100,000 + 999,990 =1,111,100

−→ IDS is preferred when sear
h spa
e is large and depth unknown

B.Y.Choueiry
17
Instru
tor'snotes#6
February6,2006

'&

$%

Bidire
tional sear
h (I)

→ Given initial state and the goal state, start sear
h from bothends and meet in the middle

GoalStart

→ Assume same b bran
hing fa
tor, ∃ solution at depth d, time:

O(2bd/2) = O(bd/2)

b = 10, d = 6, DFS= 1,111,111 nodes, BDS=2,222 nodes!

B.Y.Choueiry
18
Instru
tor'snotes#6
February6,2006



'&

$%

Bidire
tional sear
h (2)In pra
ti
e :�(

• Need to de�ne prede
essor operators to sear
h ba
kwardsIf operator are invertible, no problem

• What if ∃ many goals (set state)?do as for multiple-state sear
h

• need to 
he
k the 2 fringes to see how they mat
hneed to 
he
k whether any node in one spa
e appears in theother spa
e (use hashing)need to keep all nodes in a half in memory O(bd/2)

• What kind of sear
h in ea
h half spa
e?

B.Y.Choueiry
19
Instru
tor'snotes#6
February6,2006

'&

$%

SummaryCriterion Breadth- Uniform- Depth- Depth- IterativeFirst Cost First Limited DeepeningComplete? Yes∗ Yes∗ No Yes, if l ≥ d YesTime b
d+1

b
⌈C∗/ǫ⌉

b
m

b
l

b
dSpa
e b

d+1
b
⌈C∗/ǫ⌉

bm bl bdOptimal? Yes∗ Yes∗ No No Yes

b bran
hing fa
tor

d solution depth

m maximum depth of tree

l depth limit

B.Y.Choueiry
20
Instru
tor'snotes#6
February6,2006



'&

$%

Loops: Avoid repeated states (I)Avoid expanding states that have already been visitedValid for both in�nite and �nite treesExample: 













m maximum depth

m + 1 states

2m possible bran
hes (paths)

A

B

C

D

A

BB

CCCC

B.Y.Choueiry
21
Instru
tor'snotes#6
February6,2006

'&

$%

Loops: (2)Keep nodes in two lists: 





Open list: FringeClosed list: Leaf and expansed nodesDis
ard a 
urrent node that mat
hes a node in the 
losed listTree-Sear
h −→ Graph-Sear
h

A

B

C

D

A

BB

CCCCIssues:1. Implementation: hash table, a

ess is 
onstant timeTrade-o� 
ost of storing+
he
king vs. 
ost of sear
hing2. Losing optimalitywhen new path is 
heaper/shorter of the one stored3. BFS and IDS now require exponential storage

B.Y.Choueiry
22
Instru
tor'snotes#6
February6,2006



'&

$%

SummaryPath: sequen
e of a
tions leading from one state to anotherPartial solution: a path from an initial state to another stateSear
h: develop a sets of partial solutions

• Sear
h tree & its 
omponents (node, root, leaves, fringe)

• Data stru
ture for a sear
h node

• Sear
h spa
e vs. state spa
e

• Node expansion, queue order

• Sear
h types: uninformed vs. heuristi


• 6 uninformed sear
h strategies

• 4 
riteria for evaluating & 
omparing sear
h strategies

B.Y.Choueiry
23
Instru
tor'snotes#6
February6,2006

'&

$%

Sear
hing with partial information (I)So far, we assumed:

• Environment fully observable

• Environment deterministi


• Agent knows e�e
ts of a
tionsThus, agent

• always knows where it is

• 
an 
ompute state where it will be after a sequen
e of a
tionsWhat happens when knowledge about states and a
tions isin
omplete?

B.Y.Choueiry
24
Instru
tor'snotes#6
February6,2006



'&

$%

Sear
hing with partial information (2)In
ompleteness yields 3 types of problems:

• Sensorless (
onformant) problems

• Contingen
y problems

• Exploration problems

B.Y.Choueiry
25
Instru
tor'snotes#6
February6,2006

'&

$%

Sensorless problems (
onformant)

• Environment not observable, no per
epts

• Agent does not know in whi
h exa
t state it is� agent may be in one of more possible initial states� an a
tion may lead to one or more possible su

essor states

B.Y.Choueiry
26
Instru
tor'snotes#6
February6,2006



'&

$%

Contingen
y problems

• environment partially observable or a
tions are un
ertain

• agent's per
epts provide new input after ea
h a
tion, a
ontingen
y to plan for

• Adverserial problems: un
ertainty 
aused by a
tion of otheragents

B.Y.Choueiry
27
Instru
tor'snotes#6
February6,2006

'&

$%

Exploration problems

• States and a
tions of the environment are unknown

• Agent must a
t to dis
over them

• Extreme 
ase of 
ontingen
y problem

B.Y.Choueiry
28
Instru
tor'snotes#6
February6,2006



'&

$%

Sensorless problems (I)Va
uum 
leaner: no sensors, but agent knows e�e
ts of a
tionsAgent may be in any state {1, 2, 3, 4, 5, 6, 7, 8}

• [Right] always ends in {2, 4, 6, 8}

• [Right, Suck] always ends in {4, 8}

• [Right, Suck,Left, Suck] always works, 
oer
es the world into 7

B.Y.Choueiry
29
Instru
tor'snotes#6
February6,2006

'&

$%

Sensorless problems (2)Environment not (fully) observable:

• Agent must think about sets of states,

• Agent has a belief state (set of possible states)Environment fully observable: 1 belief state has 1 stateSolving sensorless problems: sear
h in spa
e of beliefs

• initial state is a belief state (all possible states)

• a
tions map 1 belief state into another

• belief state is union of applying a
tion to ea
h state in initialbelief state

• goal is rea
hed when all states in belief state are goal states

B.Y.Choueiry
30
Instru
tor'snotes#6
February6,2006



'&

$%

Sensorless problems (2)va
uum 
leaner: 12 belief states

L

R

S

L

R

S

L R

S

LR

S
L

R

S

L R

SL

R

SIn general:8 states, 28 possible belief states
S states, 2S possible belief states

B.Y.Choueiry
31
Instru
tor'snotes#6
February6,2006

'&

$%

Sensorless problems (3)So far assumed deterministi
 environmentApproa
h/results hold for nondeterministi
 environmentExample: Murphy's law, Suck sometimes deposits dirt on 
arpetbut only if there is no dirt there already

• [Suck] applied to State 4 leads to {2, 4}

• [Suck] applied to {1, 2, 3, 4, 5, 6, 7, 8} leads to . . .

• Problem is unsolvable (Exer
ise 3.18)!!Agent 
annot tell whether state is dirty and 
annot predi
twhether Suck is going to make it dirty or 
lean

B.Y.Choueiry
32
Instru
tor'snotes#6
February6,2006



'&

$%

Contingen
y problems (I)Environment partially observable or a
tions are un
ertainWhen agent 
an get some information:

• about environment

• from sensors

• after a
tingSolution to a 
ontingen
y problem is not a path, but a tree

−→ bran
hes are sele
ted depending on per
epts

B.Y.Choueiry
33
Instru
tor'snotes#6
February6,2006

'&

$%

Contingen
y problems (2)Example: va
uum 
leaner

• has `lo
al dirt' sensor, no r̀emote dirt' sensor

• has lo
ation sensor

• Murphy's lawNow,

• Agent per
eives [L,Dirty], thinks in state {1, 3}

• A
tion [Suck] leads to {5, 7}

• A
tion [Suck,Right] leads to {6, 8}

• A
tion [Suck,Right, Suck] leads to {8, 6}Plan 
an su

eed (8), or fail (6)Thus, a
tion [Suck,Right, if [R,Dirty]thenSuck] leads to {8, 6}Solution is a tree

B.Y.Choueiry
34
Instru
tor'snotes#6
February6,2006



'&

$%

Contingen
y problems (3)Example: va
uum 
leaner

• has `lo
al dirt' sensor and r̀emote dirt' sensor

• has lo
ation sensor (fully observable)

• Murphy's lawSolution is a sequen
e of a
tionsAgent 
an pro
eed...

B.Y.Choueiry
35
Instru
tor'snotes#6
February6,2006

'&

$%

Contingen
y problems (4)In general, agent

• a
ts before having a guaranteed plan (solution is a tree)

• needs to 
onsider every possibility that might arise

−→ may be an overkillIt is (sometimes) ne
essary to start a
ting,and deal with 
ontingen
ies as they arise

• −→ Interleave Sear
h and Exe
ution

• −→ Useful for game playing and exploration problems

B.Y.Choueiry
36
Instru
tor'snotes#6
February6,2006


