CSCE 970 Lecture 3:
Linear Classifiers

Stephen D. Scott

January 21, 2003

Introduction

e Sometimes probabilistic information unavailable
or mathematically intractable

e Many alternatives to Bayesian classification,
but optimality guarantee may be compromised!

e Linear classifiers use a decision hyperplane to
perform classification

e Simple and efficient to train and use

e Optimality requires linear separability of classes

O =Class A , :
4 =ClassB . O
¥ = unclassified %
// + +
. =decisionli L
ecision line _ o + +
Jr
Jr

Linear Discriminant Functions

Let w = [wy,...,w]T be a weight vector and
wg (a.k.a. §) be a threshold

Decision surface is a hyperplane:

wl . x+wy=0

E.g. predict wp if Y. wiz; > wo, otherwise
predict wy

Focus of this lecture: How to find w;'s

— Perceptron algorithm
— Winnow

— Least squares methods (if classes not lin-
early separable)

The Perceptron Algorithm

e Assume linear separability, i.e. Iw* s.t.

wT. x>0 Vxeuw
wl.x<0 Vx€euws
(w§ is included in w*)

e So d deterministic function classifying vectors
(contrary to Ch. 2 assumptions)

(w)
y(t)=1if sum>0

J(t)=0 otherwise

(w,)

May alsouse+1land -1

e Given actual label y(t) for trial ¢, update weights:
w(t+1) =w(t) + p(y(t) — y(t)x(t)
- p> 0 is learning rate

- (y(t) —y(t)) moves weights toward correct
prediction for x

The Perceptron Algorithm
Example

%1 0=0 w=0

our new dec. line

opt. dec. line ‘ v W(t+1)

4 X~ Xl

The Perceptron Algorithm
Intuition

o Compromise between correctiveness and
conservativeness

— Correctiveness: Tendency to improve on x(t)
if prediction error made

— Conservativeness: Tendency to keep
w(t+ 1) close to w(t)

e Use cost function that measures both:

conseruv. corrective

U(w) = [w(t+1) = w®)[3+n (y(t) — w(t+ 1) -x(t))?

Y/
=Y (wit +1) —wi()% +
=1

. 2
n (y(t) - > wit+1) fEi(t))

=1

The Perceptron Algorithm
Intuition
(cont'd)

e Take gradient w.r.t. w(t+ 1) and set to O:

0=2(w;(t+1) —w(¥)) —
0
2n (y(t) = wit+ 1)%’@)) z;(t)

i=1
e Approximate with

0=2(w(t+1) —w;i(t)) —
l
2n (y(t) = > w(t) xi(t)) z;(t),

i=1
which yields
w;i(t + 1) = w;(t) +

¢
n (y(t) - wi(t)mi(t)> i (1)

i=1

e Applying threshold to summation yields
wi(t 4+ 1) = wi(t) +n (y(t) — §(¢)) =;(t)

7

The Perceptron Algorithm
Miscellany

e If classes linearly separable, then by cycling
through vectors,
guaranteed to converge in finite number of steps

e For real-valued output, can replace threshold
function on sum with

— Identity function: f(z) ==
— Sigmoid function: e.g. f(z) = m

— Hyperbolic tangent: e.g. f(z) = c tanh(ax)

Winnow/Exponentiated Gradient

(001)
J=1if sum >0

X Twy T J(t)=0 otherwise

()

May asouse+1land -1
e Same as Perceptron, but update weights:
wi(t + 1) = wi(t) exp (=2n(F(t) — y(¢)) z;(t))

o If y(¢),y(t) € {0,1}Vt, then set n = (Ina)/2
(a > 1) and get Winnow:

wi()/a®® if Gt) =1, y(t) =0
wi(t + 1) = {w;()a®® if G(t) =0, y(t) =1
w;(t) if g(t) = y(t)

Winnow/Exponentiated Gradient
Intuition

e Measure distance in cost function with
unnormalized relative entropy:

conserv.

V4
Uy = Y <wi<t) w4+ 1) w4 1)In

i=1

wi(t+1))
w;(t)
corrective

+n (y—w(t+ 1) x(t))?

e Take gradient w.r.t. w(t+ 1) and set to O:

. J4
o=@t o, <y(t> — Y w4 D) zi(t>> 2i()

wi(t) i=1

e Approximate with

' ¢
0=In wit+1) 2n (y(t) -y 11)7;(t)wi(t)) z;(t),

w; () i=1

which yields
wi(t + 1) = w;(t) exp (—2n (F(t) —y(t)) zi(t))

10

Winnow/Exponentiated Gradient
Negative Weights

e Winnow and EG update wts by multiplying by
a pos const: impossible to change sign

— Weight vectors restricted to one quadrant

e Solution: Maintain wt vectors w1 (t) and w—(t)
— Predict §(t) = (wF () — w= (1)) - x(t)
— Update:
rif (#) = exp (=20 (§(1) — y(1)) 2:(£) U)
ro () = 1/r(8)

wit (8 ri (1)
sty (wF@ et @) +wy)y (1))

wit+1)=0U-

U and denominator normalize wts for proof of error
bound

Kivinen & Warmuth, “Additive Versus Exponen-
tiated Gradient Updates for Linear Prediction.”
Information and Computation, 132(1):1-64, Jan.
1997. [see web page]

11

Winnow/Exponentiated Gradient
Miscellany

e Winnow and EG are muliplicative weight update
schemes versus additive weight update schemes,
e.g. Perceptron

e Winnow and EG work well when most attributes
(features) are irrelevant, i.e. optimal weight
vector w* is sparse (many O entries)

e E.g. z; € {0,1}, x's are labelled by a monotone
k-disjunction over ¢ attributes, k < ¢

— Remaining ¢ — k are irrelevant
— E.g. 25 VagVz1o, £ =150, k=3
— For disjunctions, number of on-line

prediction mistakes is O(klog¥#) for Winnow
and worst-case Q(k¢) for Perceptron

— So in worst case, need exponentially fewer
updates for training in Winnow than Per-
ceptron

e Other bounds exist for real-valued inputs and
outputs

12

Non-Linearly Separable Classes

e What if no hyperplane completely separates
the classes?

e Add extra inputs that are nonlinear combina-
tions of original inputs (Section 4.14)

— E.g. attribs. 1 and z5, so try
T
_ 2 .2 .2 2
X = |:ZC]_, 2, T1X2, 1‘1, x27 Zl?ll'Q, wlfzax%fg]
— Perhaps classes linearly separable in new fea-
ture space

— Useful, especially with Winnow/EG loga-
rithmic bounds

— Kernel functions/SVMs

e Pocket algorithm (p. 63) guarantees conver-
gence to a best hyperplane

e Winnow's & EG’'s agnostic results
e Least squares methods (Sec. 3.4)
e Networks of classifiers (Ch. 4)

13

Non-Linearly Separable Classes
Winnow's Agnostic Results

e Winnow's total number of prediction mistakes
loss (in on-line setting) provably not much worse
than best linear classifier

() =ClassA O O opti/r/nal decision line
= ClassB o
i oo g
o/ +
o v+
St
< +
/ +
o+ O

e Loss bound related to performance of best
classifier and total distance under || - ||; that
feature vectors must be moved to make best
classifier perfect [Littlestone, COLT '91]

e Similar bounds for EG [Kivinen & Warmuth]

14

Non-Linearly Separable Classes
Least Squares Methods

e Recall from Slide 7:

¢
wi(t+ 1) = w;(t) +n (y(t) -y wi(t)l’i(t)> x;(t)

=1
= wi(t) + 7 (y(&) = W) x(1)) 2;(t)

e If we don't threshold dot product during train-
ing and allow n to vary each trial (i.e. substi-
tute n;), get* Eq. 3.38, p. 69:

w(t+1) = w(t) +m x(8) (y(t) — wH)T - x(®))

e This is Least Mean Squares (LMS) Algorithm

e If e.g. ;y = 1/t, then
lim P (w(t) = w"*) =1,
t—o0
where

2
w* = argmin {E Uy - wT'x’]}
weR!

is vector minimizing mean square error (MSE)

*Note that here w(t) is weight before trial t. In book it is
weight after trial ¢.

15

Multiclass learning
Kessler's Construction

o)l‘slinekl‘ / wgsline

/:, [2[2]

% /I, \,/

X X |/"O O
77777777777777 ;. wsline

=Class ,’/
+ =Classw, /

X =Class wy / +

e For* x = [2,2,1]7 of class wy, want

+1 +1 +1 r+1
Do wymy > Y woiry AND Y wim >) wamg
i=1 i=1 i=1 i=1

*The extra 1 is added so threshold can be placed in w.

16

Multiclass learning
Kessler's Construction (cont'd)

e SO map x to
orig. neg pad
x1=[22,1,-2,-2,-1,0,0,0"
xo =[2,2,1,0,0,0,—2,—2,—1]T
(all labels = +1) and let
W1 Wwo w3
W = [@11, W12, W10, Wa1, W3, W20, W31, W32, W30) -

e Now if w*T'.x; >0 and w*T . x5 > 0, then

+1 +1 41 41
>owimi> Y whxz; AND Y wim > Y wl
i=1 i=1 i=1 i=1

e In general, map (/+ 1) x 1 feature vector x to
X1,...Xp—1, €ach of size ({+ 1)M x 1

e X € w; = x in i¢th block and —x in jth block,
(rest are 0s). Repeat for all j # 1

e Now train to find weights for new vector space
via perceptron, Winnow, etc.

17

Multiclass learning
Error-Correcting Output Codes (ECOQ)

e Since Win. & Percep. learn binary functions,
learn individual bits of binary encoding of classes

e E.g. M = 4, so use two linear classifiers:

Class Binary Encoding
Classifier 1 Classifier 2
w1 0 0
w9 0 1
w3 1 0
w4 1 1

and train simultaneously

e Problem: Sensitive to individual classifier er-
rors, so use a set of encodings per class to
improve robustness

e Similar to principle of error-correcting output
codes used in communication networks
[Dietterich & Bakiri, 1995]

e General-purpose, independent of learner

18

Topic summary due in 1 week!

19

