CSCE 970 Lecture 3: Linear Classifiers

Stephen D. Scott

January 21, 2003

1

Introduction

- Sometimes probabilistic information unavailable or mathematically intractable
- Many alternatives to Bayesian classification, but optimality guarantee may be compromised!
- <u>Linear classifiers</u> use a <u>decision hyperplane</u> to perform classification
- Simple and efficient to train and use
- Optimality requires linear separability of classes

2

Linear Discriminant Functions

- Let $\mathbf{w} = [w_1, \dots, w_\ell]^T$ be a <u>weight vector</u> and w_0 (a.k.a. θ) be a <u>threshold</u>
- Decision surface is a hyperplane:

$$\mathbf{w}^T \cdot \mathbf{x} + w_0 = 0$$

- \bullet E.g. predict ω_2 if $\sum_{i=1}^\ell w_i x_i > w_0$, otherwise predict ω_1
- ullet Focus of this lecture: How to find w_i 's
 - Perceptron algorithm
 - Winnow
 - Least squares methods (if classes not linearly separable)

The Perceptron Algorithm

• Assume linear separability, i.e. $\exists w^*$ s.t.

$$\begin{aligned} \mathbf{w}^{*T} \cdot \mathbf{x} &> 0 & \forall \mathbf{x} \in \omega_1 \\ \mathbf{w}^{*T} \cdot \mathbf{x} &\leq 0 & \forall \mathbf{x} \in \omega_2 \end{aligned}$$

 $(w_0^* \text{ is included in } \mathbf{w}^*)$

 So ∃ deterministic function classifying vectors (contrary to Ch. 2 assumptions)

May also use +1 and -1

• Given actual label y(t) for trial t, update weights:

$$\mathbf{w}(t+1) = \mathbf{w}(t) + \rho(y(t) - \hat{y}(t))\mathbf{x}(t)$$

- $\cdot \rho > 0$ is learning rate
- \cdot $(y(t) \hat{y}(t))$ moves weights toward correct prediction for x

The Perceptron Algorithm

Example

5

The Perceptron Algorithm

Intuition

- Compromise between <u>correctiveness</u> and <u>conservativeness</u>
 - Correctiveness: Tendency to improve on $\mathbf{x}(t)$ if prediction error made
 - Conservativeness: Tendency to keep $\mathbf{w}(t+1)$ close to $\mathbf{w}(t)$
- Use cost function that measures both:

$$U(\mathbf{w}) = \frac{\mathbf{vonserv.}}{\|\mathbf{w}(t+1) - \mathbf{w}(t)\|_{2}^{2}} + \eta \frac{\mathbf{vorective}}{\|\mathbf{v}(t) - \mathbf{w}(t+1) \cdot \mathbf{x}(t)\|^{2}}$$

$$= \sum_{i=1}^{\ell} (w_{i}(t+1) - w_{i}(t))^{2} + \eta \left(y(t) - \sum_{i=1}^{\ell} w_{i}(t+1) x_{i}(t)\right)^{2}$$

6

8

The Perceptron Algorithm

Intuition (cont'd)

• Take gradient w.r.t. w(t+1) and set to 0:

$$0 = 2 (w_i(t+1) - w_i(t)) - 2\eta \left(y(t) - \sum_{i=1}^{\ell} \frac{w_i(t+1)}{v_i(t)} x_i(t) \right)$$

Approximate with

$$0 = 2 \left(w_i(t+1) - w_i(t) \right) - 2\eta \left(y(t) - \sum_{i=1}^{\ell} \frac{w_i(t)}{v_i(t)} x_i(t) \right) x_i(t),$$

which yields

$$w_i(t+1) = w_i(t) +$$

$$\eta \left(y(t) - \sum_{i=1}^{\ell} w_i(t) x_i(t) \right) x_i(t)$$

Applying threshold to summation yields

$$w_i(t+1) = w_i(t) + \eta \left(y(t) - \hat{y}(t) \right) x_i(t)$$

The Perceptron Algorithm

Miscellany

• If classes linearly separable, then by cycling through vectors,

guaranteed to converge in finite number of steps

- For real-valued output, can replace threshold function on sum with
 - Identity function: f(x) = x
 - Sigmoid function: e.g. $f(x) = \frac{1}{1 + \exp(-ax)}$
 - Hyperbolic tangent: e.g. $f(x) = c \tanh(ax)$

Winnow/Exponentiated Gradient

• Same as Perceptron, but update weights:

$$w_i(t+1) = w_i(t) \exp(-2\eta(\hat{y}(t) - y(t)) x_i(t))$$

• If $y(t), \hat{y}(t) \in \{0, 1\} \forall t$, then set $\eta = (\ln \alpha)/2$ $(\alpha > 1)$ and get Winnow:

$$w_i(t+1) = \begin{cases} w_i(t)/\alpha^{x_i(t)} & \text{if } \hat{y}(t) = 1, \ y(t) = 0 \\ w_i(t)\alpha^{x_i(t)} & \text{if } \hat{y}(t) = 0, \ y(t) = 1 \\ w_i(t) & \text{if } \hat{y}(t) = y(t) \end{cases}$$

9

Winnow/Exponentiated Gradient Intuition

 Measure distance in cost function with unnormalized relative entropy:

 $U(\mathbf{w}) = \sum_{i=1}^{\ell} \left(w_i(t) - w_i(t+1) + w_i(t+1) \ln \frac{w_i(t+1)}{w_i(t)} \right)$ $+ \eta \underbrace{(y - \mathbf{w}(t+1) \cdot \mathbf{x}(t))^2}_{\text{corrective}}$

• Take gradient w.r.t. w(t+1) and set to 0:

$$0 = \ln \frac{w_i(t+1)}{w_i(t)} - 2\eta \left(y(t) - \sum_{i=1}^{\ell} w_i(t+1) x_i(t) \right) x_i(t)$$

Approximate with

$$0 = \ln \frac{w_i(t+1)}{w_i(t)} - 2\eta \left(y(t) - \sum_{i=1}^{\ell} \frac{w_i(t)}{w_i(t)} x_i(t) \right) x_i(t),$$

which yields

$$w_i(t+1) = w_i(t) \exp(-2\eta (\hat{y}(t) - y(t)) x_i(t))$$

10

Winnow/Exponentiated Gradient Negative Weights

- Winnow and EG update wts by multiplying by a pos const: impossible to change sign
 - Weight vectors restricted to one quadrant
- Solution: Maintain wt vectors $\mathbf{w}^+(t)$ and $\mathbf{w}^-(t)$
 - Predict $\hat{y}(t) = (\mathbf{w}^+(t) \mathbf{w}^-(t)) \cdot \mathbf{x}(t)$
 - Update:

$$r_i^+(t) = \exp(-2\eta (\hat{y}(t) - y(t)) x_i(t) \underline{U})$$

 $r_i^-(t) = 1/r_i^+(t)$

$$w_i^+(t+1) = U \cdot \frac{w_i^+(t) \, r_i^+(t)}{\sum_{j=1}^{\ell} \left(w_i^+(t) \, r_i^+(t) + w_i^-(t) \, r_i^-(t) \right)}$$

 ${\color{red} {\it U}}$ and denominator normalize wts for proof of error bound

Kivinen & Warmuth, "Additive Versus Exponentiated Gradient Updates for Linear Prediction." *Information and Computation*, 132(1):1–64, Jan. 1997. [see web page]

Winnow/Exponentiated Gradient Miscellany

- Winnow and EG are <u>muliplicative weight update</u> schemes versus <u>additive weight update</u> schemes, e.g. Perceptron
- Winnow and EG work well when most attributes (features) are <u>irrelevant</u>, i.e. optimal weight vector w* is sparse (many 0 entries)
- E.g. $x_i \in \{0,1\}$, \mathbf{x} 's are labelled by a monotone k-disjunction over ℓ attributes, $k \ll \ell$
 - Remaining $\ell-k$ are irrelevant
 - E.g. $x_5 \lor x_9 \lor x_{12}$, $\ell = 150$, k = 3
 - For disjunctions, number of on-line prediction mistakes is $O(k \log \ell)$ for Winnow and worst-case $\Omega(k\ell)$ for Perceptron
 - So in worst case, need <u>exponentially fewer</u> updates for training in Winnow than Perceptron
- Other bounds exist for real-valued inputs and outputs

11

Non-Linearly Separable Classes

- What if no hyperplane completely separates the classes?
- Add extra inputs that are nonlinear combinations of original inputs (Section 4.14)
 - E.g. attribs. x_1 and x_2 , so try $\mathbf{x} = \begin{bmatrix} x_1, \, x_2, \, x_1 x_2, \, x_1^2, \, x_2^2, \, x_1^2 x_2, \, x_1 x_2^2, \, x_1^3, \, x_2^3 \end{bmatrix}^T$
 - Perhaps classes linearly separable in new feature space
 - Useful, especially with Winnow/EG logarithmic bounds
 - Kernel functions/SVMs
- Pocket algorithm (p. 63) guarantees convergence to a best hyperplane
- Winnow's & EG's agnostic results
- Least squares methods (Sec. 3.4)
- Networks of classifiers (Ch. 4)

13

Non-Linearly Separable Classes

Winnow's Agnostic Results

 Winnow's total number of prediction mistakes loss (in <u>on-line setting</u>) provably not much worse than best linear classifier

- Loss bound related to performance of best classifier and total distance under $\|\cdot\|_1$ that feature vectors must be moved to make best classifier perfect [Littlestone, COLT '91]
- Similar bounds for EG [Kivinen & Warmuth]

14

Non-Linearly Separable Classes

Least Squares Methods

• Recall from Slide 7:

$$w_i(t+1) = w_i(t) + \eta \left(y(t) - \sum_{i=1}^{\ell} w_i(t) x_i(t) \right) x_i(t)$$
$$= w_i(t) + \eta \left(y(t) - \mathbf{w}(t)^T \cdot \mathbf{x}(t) \right) x_i(t)$$

• If we don't threshold dot product during training and allow η to vary each trial (i.e. substitute η_t), get* Eq. 3.38, p. 69:

$$\mathbf{w}(t+1) = \mathbf{w}(t) + \eta_t \mathbf{x}(t) \left(y(t) - \mathbf{w}(t)^T \cdot \mathbf{x}(t) \right)$$

- This is Least Mean Squares (LMS) Algorithm
- If e.g. $\eta_t = 1/t$, then

$$\lim_{t \to \infty} P\left(\mathbf{w}(t) = \mathbf{w}^*\right) = 1,$$

where

$$\mathbf{w}^* = \operatorname*{argmin}_{\mathbf{w} \in \Re^\ell} \left\{ \mathsf{E} \left[\left| \boldsymbol{y} - \mathbf{w}^T \cdot \mathbf{x} \right|^2 \right] \right\}$$

is vector minimizing mean square error (MSE)

*Note that here $\mathbf{w}(t)$ is weight <u>before</u> trial t. In book it is weight <u>after</u> trial t.

Multiclass learning

Kessler's Construction

• For* $\mathbf{x} = [2, 2, 1]^T$ of class ω_1 , want

$$\sum_{i=1}^{\ell+1} w_{1i} x_i > \sum_{i=1}^{\ell+1} w_{2i} x_i \quad \underline{\text{AND}} \quad \sum_{i=1}^{\ell+1} w_{1i} x_i > \sum_{i=1}^{\ell+1} w_{3i} x_i$$

*The extra 1 is added so threshold can be placed in w.

15

Multiclass learning

Kessler's Construction (cont'd)

• So map x to

$$\begin{aligned} \mathbf{x}_1 &= [\overbrace{2,2,1}, \overbrace{-2,-2,-1}, \overbrace{0,0,0}]^T \\ \mathbf{x}_2 &= [2,2,1,0,0,0,-2,-2,-1]^T \end{aligned}$$

(all labels = +1) and let

$$\mathbf{w} = [\overline{w_{11}, w_{12}, w_{10}}, \overline{w_{21}, w_{22}, w_{20}}, \overline{w_{31}, w_{32}, w_{30}}]^T$$

ullet Now if $\mathbf{w}^{*T} \cdot \mathbf{x}_1 > 0$ and $\mathbf{w}^{*T} \cdot \mathbf{x}_2 > 0$, then

$$\sum_{i=1}^{\ell+1} w_{1i}^* x_i > \sum_{i=1}^{\ell+1} w_{2i}^* x_i \quad \underline{\text{AND}} \quad \sum_{i=1}^{\ell+1} w_{1i}^* x_i > \sum_{i=1}^{\ell+1} w_{3i}^* x_i$$

- In general, map $(\ell+1)\times 1$ feature vector ${\bf x}$ to ${\bf x}_1,\dots {\bf x}_{M-1}$, each of size $(\ell+1)M\times 1$
- $\mathbf{x} \in \omega_i \Rightarrow \mathbf{x}$ in ith block and $-\mathbf{x}$ in jth block, (rest are 0s). Repeat for all $j \neq i$
- Now train to find weights for new vector space via perceptron, Winnow, etc.

Multiclass learning

Error-Correcting Output Codes (ECOC)

- Since Win. & Percep. learn binary functions, learn individual bits of binary encoding of classes
- E.g. M=4, so use two linear classifiers:

Class	Binary Encoding	
	Classifier 1	Classifier 2
ω_1	0	0
ω_2	0	1
ω_{3}	1	0
ω_{4}	1	1

and train simultaneously

- <u>Problem:</u> Sensitive to individual classifier errors, so use a <u>set of encodings</u> per class to improve robustness
- Similar to principle of error-correcting output <u>codes</u> used in communication networks [Dietterich & Bakiri, 1995]
- General-purpose, independent of learner

18

Topic summary due in 1 week!

17